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PTE?? Waitlist??

• Sorry that I cannot give PTEs…


• Except to a few PhD students that really need this course for their research


• And I cannot admit the waitlist either


• Because of room capacity and TA limit


• But I’m happy to have you all audit the 
course!


• If you’re PhD who really needs this 
course, or you want to audit, scan the 
QR code.


• ps: Bruinlearn will be up soon



Machine Learning Becomes Mainstream
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Personalized medicine Robotics

Finance Autonomous cars
* . • 
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How do we learn?

ML model



How Big are Our Models?
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How big are we now?
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How big are we now?
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Increasing model size is a proxy for increasing performance 
(power-law between model size and performance)

[Kaplan et al 2020]
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打字机文本
People found that the size of the model helps the performance a lot



How big are we now?
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Data is as important as scaling model size!
“For 2x model size, data should also be 2x”

[Hoffmann et al 2022]
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People realize that the data quantity doesn't catch up with the size of the model



Data is the key

• A smaller model can vastly outperform a larger — but 
suboptimal — model if trained on more data


• Chinchilla, a 70B-parameter model 4 times smaller than the 
previous leader in language AI, Gopher, but trained on 4 
times more data. 


• Chinchilla “uniformly and significantly” outperforms Gopher, 
GPT-3, Jurassic-1, and Megatron-Turing NLG across a 
large set of benchmarks.
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Xinyi Chen
高亮

Xinyi Chen
打字机文本
小而精效果更好



Big models are significantly undertrained

• Kaplan’s law: if compute budget increases by a factor of 10, 
we get optimal performance when model size is increased by 
5.5x and data size is increased by 1.8x.


• Chinchilla: both model size and number of tokens should 
increase in parallel, roughly by 3.16x (or √10x).


• Conclusion: a 175B model (GPT-3-like) should be trained with 
more than 10 times data than what OpenAI used for their 
GPT-3 175B model). A 280B model (Gopher-like) should be 
trained with 20 times what DeepMind used for Gopher.

10

Xinyi Chen
高亮
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Data requirement is too big to deploy 
models safely!

Xinyi Chen
打字机文本
How do you understand safely here?1. Without data leaking	1.1 The data might be private, so uploading big data to cloud can cause leak problem2. Without breakdown	2.1 Deploying a lot of data might cause the system to break down
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training a single deep model GPT-3 on 45TB of data

Problem 1: Training Large Models is Expensive

12M 34 days on 1024 A100s 
335 years on 8 A100s

17.8X the yearly energy consumption 
of the average American

CO2: a car driving 2x the distance between 
Earth and Moon!!

Example:
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Problem 2: Real-world Datasets are Biased

Example: self driving data 

5%
1%

14%

80%

• Model performs poorly on minorities (Fairness)

• Spurious biases impede out-of-distribution (OOD) performance

Xinyi Chen
高亮



Problem 3: Real Data is Unlabeled
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Example: crowed-sourcing, automated labeling, …

Over-parameterized models overfit and memorize the 
mislabeled data

• We label the data automatically
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Problem 4: Examples May be Corrupted
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Example: large Image and NLP datasets, …

Adversarial attacks change the prediction of a test-time 
target example and cannot be visually identified

• Many large datasets are collected from Internet or users
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This course is about:
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How can we train big models on big 
data more efficiently and robustly?

From an algorithmic point of view!



• Who should take this course? 

• If this is really relevant to your research/career and you’re up 
for doing some hard work!


• Who should not take this course? 

• This is not a light-weight course, don’t take it if you’re busy 
this quarter


• This is an advanced course, don’t take it if you don’t have a 
good background in ML and ML theory


• I assume you’re good in coding in general, running deep 
learning pipelines, and math!


• Otherwise, please consider auditing instead!
18



Grading

• 3 Assignments: 10% each


• Both written/theory and programming questions


• Midterm exam (in the class): 40%


• Final project (in groups of 3): 30%


• Project presentation: 10%


• Project report: 20%
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Projects

• You should choose a topic related to the materials 
discussed in the course.


• [Ideal] a novel and sound solution to an interesting problem 
discussed in the course that is publishable in machine 
learning conferences. 


• a theoretical analysis of methods we’ve studied, or 


• an application of the methods you’ve learned in this course.


• You should clarify the contribution of each team member in 
your report
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Discussions

• Solving homework questions


• Important for the midterm!


• We’ll collect and answer your questions in the 
discussion sessions 


• The TA will not help with the programming questions 
and setting up the frameworks!

21



Schedule
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Part 1 Part 2

week 1 Oct 2 [Review] momentum, adaptive lr

Oct 4 [Review] variance reduction

week 2
Oct9 [distributed opt.] distributed SGD, Hogwild

Oct 11 [distributed opt.] MapReduce/federated learning HW1

week 3
Oct 16 [distributed opt.] federated learning

Oct 18 [data compression] data selection: submodularity HW1 due

week 4
Oct 23 [data compression] distributed/streaming submod. alg.

Oct 25 [data compression] data selection for supervised learning HW2

week 5
Oct 30 [data compression] data selection for supervised learning

Nov 1 [data compression] data selection for supervised learning HW2 due

week 6
Nov 6 [data compression] data selection for contrastive learning

Nov 8 [data compression] data selection for contrastive learning HW3

week 7
Nov 13 [data compression] contrastive multimodal learning

Nov 15 [model compression] NN pruning HW3 due

week 8
Nov 20 [model compression] NN pruning

Nov 22 Midterm

week 9
Nov 27 [model compression] Neural Architecture Search

Nov 29 [model compression] NN quantization

week 10
Dec 4 Final project presentations 

Dec 6 Final project presentations

If this is not a review for you, please consider not taking the course!

Note: Schedule may change a bit depending on how things go



Review: Optimization
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 Quick Recap: Training a Model M
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M

M
Total loss 

Average over all 
training instances 

Divergence between desired output and 
actual output of for a given input X 

Output of : in 
response to input X 

Desired output 
in response to input X 

L(W) = l ~ div([ (X; W), D(X)) 
NxL 

X 

1w = argmJnL(W) I 

• Define a total "loss" over all training instances 

- Quantifies the difference between desired output and the actual 
output, as a function of weights 

• Find the weights that minimize the loss 



 Quick Recap: Training by Gradient Descent
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L(W) =; L div(f(X; W),D(X)) 
X X 

VwL(W) =; L Vwdiv(f (X; W), D(X)) 
X X 

Solved through 
radient descent as 

,-----------,-1 ..----------------, 

i1f = argminL(W) ===:::: I wk = wk-1 - 1JVwL(W)T I 

• The gradient of the total loss is the average of the gradients of the 
loss for the individual instances 

• The total gradient can be plugged into gradient descent update to 
learn the network 

Xinyi Chen
打字机文本
倒三角是梯度算子，也叫del或nabla算子https://zh.wikipedia.org/zh-hans/Nabla%E7%AE%97%E5%AD%90

Xinyi Chen
图章



Problem with Gradient Descent
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L(W) L(W) 
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L(W) L(W) 

-10 0 10 20 

lw k = w k - 1 - rz VwL(W)TI 
• A step size that assures fast convergence for a given eccentricity can result in 

divergence at a higher eccentricity 

• .. Or result in extremely slow convergence at lower eccentricity 

Xinyi Chen
打字机文本
离心率，越接近于0越平，等于1是圆，大于1是很扁的椭圆



Problem with Gradient Descent
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• The loss is a function of many weights (and biases) 

- Has different eccentricities w.r.t different weights 

L(W) 
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• A fixed step size for all weights in the network can result in 

the convergence of one weight, while causing a divergence 

of another 

Xinyi Chen
打字机文本
with respect to

Xinyi Chen
打字机文本
收敛

Xinyi Chen
打字机文本
发散



Solutions for problem with gradient descent
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• Try to normalize curvature in all directions 
- Second order methods, e.g. Newton's method 

- Too expensive: require inversion of a giant Hessian 

• Treat each dimension independently: 
- Rprop, quickprop 

- Works, but ignores dependence between dimensions 

• Can result in unexpected behavior 

- Can still be too slow 

Xinyi Chen
打字机文本
曲率

Xinyi Chen
高亮

Xinyi Chen
高亮



Xinyi Chen
图章

Xinyi Chen
打字机文本
https://calcworkshop.com/derivatives/newtons-method/

Xinyi Chen
打字机文本
Newton's Method

Xinyi Chen
图章



A closer look at the convergence problem

29

20 

15 

10 

5 

0 

-5 

-10 

-15 

-20 

20 20 

15 15 

10 10 

5 5 

0 0 

-5 -5 

-10 ·10 

-15 ·15 

-20 -20 
-20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 

• With dimension-independent learning rates, the solution will converge 
smoothly in some directions, but oscillate or diverge in others 

10 20 



A closer look at the convergence problem
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• With dimension-independent learning rates, the solution will converge 
smoothly in some directions, but oscillate or diverge in others 

• Proposal: 

Keep track of oscillations 

Emphasize steps in directions that converge smoothly 

Shrink steps in directions that bounce around .. 

10 20 

Xinyi Chen
高亮
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高亮

Xinyi Chen
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Xinyi Chen
打字机文本
like using just one learning rate



The momentum methods
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• Maintain a running average of all 
past steps 

- In directions in which the 
convergence is smooth, the 
average will have a large value 

- In directions in which the 
estimate swings, the positive and 
negative swings will cancel out in 
the average 

• Update with the running 
average, rather than the current 

rn 

gradient -~ 

Xinyi Chen
高亮

Xinyi Chen
打字机文本
smooth means no much oscillation

Xinyi Chen
高亮



Momentum Update
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Plain gradient update With momentum 

• The momentum method maintains a running average of all gradients until 
the current step 

LlW(k) = PLlW(k-i) - 11VwErr(wCk-1)) 

wCk) == wCk-1) + ~wCk) 

- Typical {J value is 0.9 

• The running average steps 

- Get longer in directions where gradient stays in the same sign 

- Become shorter in directions where the sign keeps flipping 

Xinyi Chen
高亮



Momentum Update

33

• The momentum method 

LlW(k) = {3LlW(k-l) - 1Jl7wErr(w(k-l)) 

• At any iteration, to compute the current step: 



Momentum Update
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• The momentum method 

LlW(k) = ,BLlW(k-l) - 1Jl7wErr(w(k-l)) 

• At any iteration, to compute the current step: 

- First computes the gradient step at the current location 



Momentum Update
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• The momentum method 

~w(k) = p~w(k-l) - 1JVwErr(w(k-l)) 

• At any iteration, to compute the current step: 

- First computes the gradient step at the current location 

- Then adds in the scaled previous step 



Momentum Update
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• The momentum method 

LlW(k) = pLlw(k-l) - 11VwErr(w(k-l)) 

• At any iteration, to compute the current step: 

- First computes the gradient step at the current location 

- Then adds in the scaled previous step 

• Which is actually a running average 



Momentum Update

37

• Takes a step along the past running average 
after walking along the gradient 

• The procedure can be made more optimal by 
reversing the order of operations .. 

Xinyi Chen
高亮



Nestorov’s Accelerated Gradient
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• Change the order of operations 

• At any iteration, to compute the current step: 



Nestorov’s Accelerated Gradient
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• Change the order of operations 

• At any iteration, to compute the current step: 

- First extend the previous step 



Nestorov’s Accelerated Gradient
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• Change the order of operations 

• At any iteration, to compute the current step: 

- First extend the previous step 

- Then compute the gradient step at the resultant 
position 



Nestorov’s Accelerated Gradient
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• Change the order of operations 

• At any iteration, to compute the current step: 

- First extend the previous step 

- Then compute the gradient step at the resultant 
position 

- Add the two to obtain the final step 



Nestorov’s Accelerated Gradient
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• Nestorov's method 

~W(k) = {3~W(k-1) - 1Jl7wErr(W(k-1) + {3~W(k-1)) 

wCk) = wck-1) + ~wCk) 

Xinyi Chen
高亮
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Xinyi Chen
打字机文本
Calculate the gradient differently



Nestorov’s Accelerated Gradient
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• Comparison with momentum (example from Hinton) 

Blue: Momentum 

• Dotted line is the final update at each iteration 

Brown/ochre/green: Nestorov 
• Brown is (scaled) previous update, ochre is gradient, green is the final update 

• Converges much faster 

Xinyi Chen
高亮



Demo
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So Far
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• Gradient descent can miss obvious answers 

- And this may be a good thing 

• Vanilla gradient descent may be too slow or unstable due to the 
differences between the dimensions 

• Second order methods can normalize the variation across 
dimensions, but are complex 

• Adaptive or decaying learning rates can improve convergence 

• Methods that decouple the dimensions can improve convergence 

• Momentum methods which emphasize directions of steady 
improvement are demonstrably superior to other methods 

Xinyi Chen
打字机文本
普通的

Xinyi Chen
高亮



Momentum Methods: Principle
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L(W) 

Increase stepsize because 
previous updates consistently 
moved weight right 

k=2 

L(W) 

Wz 

Decrease stepsize because 
previous updates kept 
changing direction 

• Ideally: Have component-specific step size 

Stepsize shrinks along w2 
but increases along wl 

- Too many independent parameters (maintain a step size for every weight/bias) 

• Adaptive solution: Start with a common step size 

- Shrink step size in directions where the weight oscillates 

- Expand step size in directions where the weight moves consistently in one direction 

Xinyi Chen
高亮

Xinyi Chen
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Xinyi Chen
打字机文本
其实是让其自适应，从而来获得类似效果



Quick Recap: Momentum Methods
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Momentum Nestorov 

w(k) = w(k-1) + {JLlW(k-1) 
extend 

LlW(k) = {JLlW(k-l) - nV, Err (w(k) ) 
·, W extend 

wCk) = wCk-1) + LlwCk) 

• Momentum: Retain gradient value, but smooth out 
gradients by maintaining a running average 

- Cancels out steps in directions where the weight value oscillates 

- Adaptively increases step size in directions of consistent change 

Xinyi Chen
高亮
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