Deep Generative Models

Lecture 12: Normalizing Flows

Aditya Grover

UCLA

1/100

Recap of normalizing flow models

So far

e Transform simple to complex distributions via sequence of
invertible transformations

e Directed latent variable models with marginal likelihood given
by the change of variables formula

e Triangular Jacobian permits efficient evaluation of
log-likelihoods

Plan for today

e Invertible transformations with diagonal Jacobians (NICE,
Real-NVP)
e Autoregressive Models as Normalizing Flow Models
e Case Study: Probability density distillation for efficient
learning and inference in Parallel Wavenet
2/100

Designing invertible transformations

e NICE or Nonlinear Independent Components Estimation (Dinh
et al., 2014) composes two kinds of invertible transformations:

additive coupling layers and rescaling layers
e Real-NVP (Dinh et al., 2017)
e Inverse Autoregressive Flow (Kingma et al., 2016)
e Masked Autoregressive Flow (Papamakarios et al., 2017)
e |-resnet (Behrmann et al, 2018)
e Glow (Kingma et al, 2018)
e MintNet (Song et al., 2019)

e And many more

3/100

NICE - Additive coupling layers

Partition the variables z into two disjoint subsets, say z;.4 and
Zgy1n forany 1 <d<n

e Forward mapping z > x:
® Xi.9 = 1.4 (identity transformation)
® Xgi1:n = Zd+1:n + Me(Z1.4) (my(-) is a neural network with
parameters 0, d input units, and n — d output units)
e Inverse mapping x > z:
e z;.4 = X1.4 (identity transformation)
® Zgi1:n = Xd+1:n — Mo(X1:d)
e Jacobian of forward mapping:

ox Iy 0
= E = 83d+1;n /n—d

Z1:.d

det(J) =1

4 /100

NICE - Rescaling layers

e Additive coupling layers are composed together (with arbitrary
partitions of variables in each layer)

e Final layer of NICE applies a rescaling transformation

e Forward mapping z > x:

Xj = §5;Z;

where s; > 0 is the scaling factor for the /-th dimension.
e Inverse mapping x — z:

Xj
zi=—
Si
e Jacobian of forward mapping:
J = diag(s)

det(J) = f[S;
=il

5 /100

w
=
2
a0
5
=]
Q
e
<
S
Q
c
o
o0
[0}
Q
=%
€
]
n

s |7

~.
S

72“1‘1'.)"6?

(b) Model trained on TFD

(a) Model trained on MNIST

6 /100

Samples generated via NICE

7/100

Real-NVP: Non-volume preserving extension of NICE

e Forward mapping z — x:
e Xxi.4 = z1.4 (identity transformation)
® Xgi1:n = Zd41:n © exp(ao(z1:q)) + po(z1:q)
e 1p(-) and agp(-) are neural networks with parameters 6, d input
units, and n — d output units [® denotes elementwise product]
e Inverse mapping x > z:
e 7., = X1.4 (identity transformation)
® Z4i1:n = (Xd+1:n - /LB(XI:d)) © (eXP(—ae(Xl:d)))
e Jacobian of forward mapping:
ok 0
T 0z \ Ze diag(exp(a(z14)))

det(J) = J] exp(ao(z1.q)i) = exp < > ao(Zl;d)i>

i=d+1 i=d+1

J

e Non-volume preserving transformation in general since

determinant can be less than or greater than 1 Yo

Samples generated via Real-NVP

9 /100

Continuous Autoregressive Models as Flows

e Consider a Gaussian autoregressive model:
p(x) = [[p(xilx<)
i=1

such that
p(xi | x<i) = N (pi(xt, - xi-1), exp(ai(xa, -+ xi-1))?).
Here, ui(-) and «;(-) are neural networks for i/ > 1 and
constants for i = 1.
e Sampler for this model:
e Sample z; ~ N(0,1) for i=1,--- ,n
Let x; = exp(a1)z1 + p1. Compute po(x1), aa(x1)

Let x» = exp(a2)z2 + p2. Compute u3(x1, X2), az(x1, x2)
Let x3 = exp(as)zz + u3. ...

e Flow interpretation: transforms samples from the standard
Gaussian (z1, 22, ..., z,) to those generated from the model
(x1,x2,...,Xn) via invertible transformations (parameterized
by wi(-), @i(-)) 10/100

Masked Autoregressive Flow (MAF)

z; =z -exp(a;) + p Vie{l...n}

Transformed
distribution

Base e
distribution

e Forward mapping from z — x:
o Let x; = exp(a1)z + p1. Compute pp(x1), aa(x1)
o Let xo = exp(an)zy + p2. Compute ps(x1, x2), az(xi, x2)
e Sampling is sequential and slow (like autoregressive): O(n)
time

Figure adapted from Eric Jang's blog

11 /100

Masked Autoregressive Flow (MAF)

Transformed vl .
distribution o | 2 Ty | @ \z‘
O

Base
distribution

(@i — pus) -exp(—i) Vi€ {1...n}

e Inverse mapping from x — z:
e Compute all y;, ; (can be done in parallel using e.g., MADE)
o Let z; = (xq — 1)/ exp(aq) (scale and shift)
o Let 2z = (xo — p2)/ exp(av2)
o Let z3 = (x3 — pu3)/ exp(as) ...
e Jacobian is lower diagonal, hence efficient determinant
computation
e Likelihood evaluation is easy and parallelizable (like MADE)
e Layers with different variable orderings can be stacked 12 /100

Inverse Autoregressive Flow (IAF)

2=z -expla) + s Vi€ {l...n}

Transformed .. .
distribution &

Base . N
distribution a | 2 % &

Forward mapping from z — x (parallel):

Sample z; ~ N(0,1) for i=1,--- ,n
Compute all p;, ; (can be done in parallel)
Let x; = exp(a1)z1 + 1

o Let xo = exp(an)zs + 12 ..
Inverse mapping from x — z (sequential):

o Let z1 = (x1 — 1)/ exp(az). Compute pia(z1), an(z1)

o Let zo = (xo — p2)/ exp(a2). Compute p3z(z1,22), a3(z1, 22)
Fast to sample from, slow to evaluate model likelihoods (train)

Note: Fast to evaluate likelihoods of a generated point (cache
21,20,y 2Zp) 13 /100

IAF is inverse of MAF

\Z‘ =z -exp(e;)+p Vie{l...n}
Transformed E

Transformed

distribution o1

@ G

@ |

distribution

» =
»

Base
distribution o - [
dlstrlbullon ala |

2 = (2 —) - exp(—as) Vi€ {1..

Figure 1: Inverse pass of MAF (left) vs. Forward pass of IAF (right)

e Interchanging z and x in the inverse transformation of MAF
gives the forward transformation of IAF
e Similarly, forward transformation of MAF is inverse

transformation of IAF
Figure adapted from Eric Jang's blog

14 /100

IAF vs. MAF

Computational tradeoffs

e MAF: Fast likelihood evaluation, slow sampling

e |AF: Fast sampling, slow likelihood evaluation
e MAF more suited for training based on MLE, density
estimation

IAF more suited for real-time generation

e Can we get the best of both worlds?

15 /100

Parallel Wavenet

e Two part training with a teacher and student model

e Teacher is parameterized by MAF. Teacher can be efficiently
trained via MLE

e Once teacher is trained, initialize a student model
parameterized by IAF. Student model cannot efficiently
evaluate density for external datapoints but allows for efficient
sampling

e Key observation: |IAF can also efficiently evaluate densities
of its own generations (via caching the noise variates

21,20,y 2Zn)

16 /100

Parallel Wavenet

e Probability density distillation: Student distribution is
trained to minimize the KL divergence between student (s)
and teacher (t)

Dic (s, £) = Exvs[log s(x) — log t(x)]

e Evaluating and optimizing Monte Carlo estimates of this
objective requires:

e Samples x from student model (IAF)
e Density of x assigned by student model
e Density of x assigned by teacher model (MAF)

e All operations above can be implemented efficiently

17 /100

Parallel Wavenet: Overall algorithm

e Training
e Step 1: Train teacher model (MAF) via MLE
e Step 2: Train student model (IAF) to minimize KL divergence
with teacher

e Test-time: Use student model for testing

e Improves sampling efficiency over original Wavenet (vanilla
autoregressive model) by 1000x!

18 /100

MintNet (Song et al., 2019)

e MintNet: Building invertible neural networks with masked

convolutions.

e A regular convolutional neural network is powerful, but it is
not invertible and its Jacobian determinant is expensive.

e We can instead use masked convolutions like in autoregressive
models to enforce ordering (like Pixel CNN)

e Because of the ordering, the Jacobian matrix is triangular and

the determinant is efficient to compute.

e If all the diagonal elements of the Jacobian matrix are
(strictly) positive, the transformation is invertible.

19 /100

MintNet (Song et al., 2019)

e lllustration of a masked convolution with 3 filters and kernel

size 3 x 3.
\ li]q. ﬁ\\

e Solid checkerboard cubes inside each filter represent
unmasked weights, while the transparent blue blocks represent
the weights that have been masked out.

e The receptive field of each filter on the input feature maps is
indicated by regions shaded with the pattern (the colored
square) below the corresponding filter.

20 /100

MintNet (Song et al., 2019)

e Uncurated samples on MNIST, CIFAR-10, and ImageNet 3232
datasets

)
1
g
¢

oyl

YN N 0N WL
NERVY AN P

~w Q

(a) MNIST (b) CIFAR-10 (c) ImageNet-32x 32

Summary of Normalizing Flow Models

e Transform simple distributions into more complex distributions
via change of variables

e Jacobian of transformations should have tractable
determinant for efficient learning and density estimation

e Computational tradeoffs in evaluating forward and inverse

transformations

