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Science Advances by Al

AlphaFold: a solution to a 50-year-old
grand challenge in biology
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GraphCast: Al model for faster and more
accurate global weather forecasting

Accelerating fusion science through
learned plasma control

Jumper, John, et al., 2021; Degrave, Jonas, et al., 2022; Lam, Remi, et al., 2022; Avsec, 2iga, etal., 2021

Al has the capability to
discover and simulate
complex patterns!



General Problem

Learn a surrogate model fj to approximate y = f(x)

\ﬂ
|
< \

Chemical molecules

______ |
f(z)! Reactivity, Stability

|
________ / |

—————

¥ Formula, structure

_____



General Problem

Learn a surrogate model fj to approximate y = f(x)
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General Problem

Learn a surrogate model fj to approximate y = f(x)
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Surrogate Modeling Use Cases

Prediction

_______________________________________________________

_______________________________________________________

WA

¥

.

-«

2 i Weather forecasting
74

(3 @

N P
s
———~N LS iy i)
:‘\):‘ ~ \ oV L
1. (20_24)[’~ OV 2000 G

PDE Protein structure
modeling prediction

£
[
/

Image credit: Penn State University; Gupta, Jayesh K., et al., 2022; Jumper, John, et al., 2021



Surrogate Modeling Use Cases

Prediction
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Black-box Optimization
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Hyperparameter
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Molecular optimization



Today's Talk

Black-box Optimization
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Image credit: Penn State University; Gupta, Jayesh K., et al., 2022; Jumper, John, et al., 2021



Black-box Optimization

d  General Problem: Optimize a function without its functional form or gradient information

— Propose x <

—  Evaluate f(z) —

Online optimization

Update fo

Logged data
{(wi,yi)}i]il
i
Train Optimize *
— fo —>2

Offline optimization

Limited labeled data but plenty unlabeled data!



Task-specific Surrogate Models

Molecules
hal .
% ), \/l._ Robotics

Black-box

Optimization
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Supervised
Learning

(CE,y) ~ f(x)

O  Overfitting
@  Train one network for each task

@ Do not make use of unlabeled data




Question
answering data

Sentiment analysis
data

Object recognition
data

Recite the first law of robotics

output:

Input Prompt:

language
[Vaswani et al., 2017;
Radford et al., 2019;
Brown et al., 2020;
inter alia]

Image credit: Bommasani, Rishi, et al., 2021

Foundation Models
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Rombach et al., 2021;
inter alia)

Tasks
N Question 9
@ Answering ’,.
Data S Sentiment
[ . Analysis
i 4 o
Text I
(40 ) > : > r)
[ <] %’ Information \
J/ lg=s N ' Extraction
- B I Adaptation
Saeoth % Training Forlln(:iat;.on o
ode {  Captionin,
@ o
| Structured
. Data
K ) Object
= D -
3D Signals qurpy %ﬁ‘? ‘ Recognition
Instruction
Following ..

&
i

QO  Unsupervised pretraining
Q  Efficiently generalize to unseen tasks




GPT-3 Pretraining

Output Tokens

ﬁ)ecoder-Only Language Modem
L

t 1

Decoder Block

Decoder Block

K
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Token/Position Embedding

Input Tokens

Unlabeled Textual Corpus
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Sample Data
The chicken crossed the ...

Image credit: https://cameronrwolfe.substack.com/

The dog ate his ...
The student aced the ...
The weather today is ...



https://cameronrwolfe.substack.com/

GPT-3 In-context Learning
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sequence #1

Mann, Ben, et al. "Language models are few-shot learners." NeurIPS 2020.
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sequence #2

Emergent in-context learning!

thanks => merci

hello => bonjour

mint => menthe

wall => mur

otter => loutre

bread => pain

sequence #3
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Today's Talk
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Today's Talk

A Part 1: Learning to Learn In-context

How to train a model that generalizes to unseen functions via in-context conditioning?



Today's Talk

d  Question: How to train a model to generalize to unseen functions/tasks?

a

In-context learning is an emergent capability of GPT-3 at a certain scale

/ Language Model Pre-Training
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Large-scale Unsupervised Pretraining

gaot => goat

sakne => snake

brid => bird

fsih => fish

dcuk => duck

cmihp => chimp

sequence #2

Buluies| 1xa1u09-u|

thanks => merci

hello => bonjour

mint => menthe

wall => mur

otter => loutre

bread => pain

sequence #3

Emergent In-context Learning

Can we explicitly train a model to generalize to unseen functions?

Mann, Ben, et al. "Language models are few-shot learners." NeurlPS 2020.

Buluies| 1xa1u09-u|



Generalizing over Functions

d  Question: How to train a model to generalize to unseen functions/tasks?

Data Points Generalization

[ Learning over data points drawn from the
same function

EwNpuain(x))y:f(m) [logp(y | J:)]

Q  The model generalizes to unseen data
points

T~ ptest(x)a Yy = f(.CU)



Generalizing over Functions

Data Points Generalization

Learning over data points drawn from the
same function

EprLrain(x)’y:f(m) [logp(y | :L.):I

The model generalizes to unseen data
points

T~ ptest(x)a Yy = f(.CU)

d  Question: How to train a model to generalize to unseen functions/tasks?

Functional Generalization

Learning over functions, given finite
context of labeled points

Efer,,. (@y).c~flogp(y | z,C)]

The model generalizes to unseen functions
given the context

f ~ J—-test, (xay)7C ~ f

N
1
1
1
1

Learning to learn in-context



Learning to Learn In-context

O Sample f~ F, . and z1.x,y1.8 ~ f

N

Q  Observe context points {z;, y; }7*, and make predictions for a set of target points {z; }j:m+1'

P Vo
; ;

3 _?—)

: : In-context

i (%3 | Learner

| i

‘C(e) — ]Efwftrain,ml:z\l,yLNNfam [logPO (?Jm—}-l:N | LTm+1:NyL1l:m, yl:m)]

target context
outputs points

Nguyen, Tung, and Aditya Grover. "Transformer neural processes: Uncertainty-aware meta learning via sequence modeling." ICML 2022.



Model Architecture

d  We instantiate the framework with a transformers architecture called TNP

L context Exl’yl [j OD D D

@ points mz[j [j E] E] D
Tra:sfonner Neural Processes J 5%0 [j [j D D E]

[ Embed } [ Embed ] [ Embed ] { Embed ] E)?)ﬁi Em,o D [j D D E]
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An example mask with N=5 and m=2
‘C(e) - EfotrainaxlzNayl:NNf7m [logp9 (ym—{—l:N | Im+1:Ns L1:m yl:m)]

_ N
- EfNFtrain’zlzNaylzNNf7m [Zi:m-i—l logp(yl | Lj, wl:m,ylzm)]

Nguyen, Tung, and Aditya Grover. "Transformer neural processes: Uncertainty-aware meta learning via sequence modeling." ICML 2022.



Properties of TNP

Property 1. Context invariance. Property 2. Target equivariance.
The model’s predictions do not depend on the permutation Whenever we permute the target inputs, the predictions
of the context points. are permuted accordingly.
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Nguyen, Tung, and Aditya Grover. "Transformer neural processes: Uncertainty-aware meta learning via sequence modeling." ICML 2022.



Variants of TNPs

We introduce TNP-A and TNP-ND to improve expressivity

Autoregressive TNP (TNP-A) Non-Diagonal TNP (TNP-ND)
Predict the target jointly with an autoregressive Predict the target jointly using a multivariate Gaussian
factorization: distribution with a non-diagonal covariance matrix:
Py (ym—i—l:N ‘ TLN, ylzm) Do (y‘m+1:N ‘ T1:N» yl:m)
N
= Hi:m—|—1 Do (yz I ml:i7y1:i—1) = N (ym+1:N I Mo (wlzN, yl:m) ) 20 (wlzNa yl:m))

Nguyen, Tung, and Aditya Grover. "Transformer neural processes: Uncertainty-aware meta learning via sequence modeling." ICML 2022.



TNPs for 1D Regression

1 Train on functions generated from GPs with an RBF kernel

20*

f~GP(0,K), K(z,a') = o? exp(— (H')z)

[ Test on functions generated from GPs with different kernels

RBF Kernel Matern_5_2 Kernel Periodic Kernel
5565 0.240 o7
0.195 0.235 0.72
0.71
0.190 0230
i 0.70
l %’ 0.185
x 0.225 0.69
0.180 —
0.220
0.175 0.67
0.66
0.170 0.215
0.65
mmm CANP mmm ANP  mmm BANP TNP-D  mmm TNP-A s TNP-ND

Nguyen, Tung, and Aditya Grover. "Transformer neural processes: Uncertainty-aware meta learning via sequence modeling." ICML 2022.



TNPs for 1D Regression

[ Train on functions generated from GPs with an RBF kernel

f~GP(0,K), K(z,z')

= 0% exp (—

(:c—a:')2

20*

)

[ Test on functions generated from GPs with different kernels
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TNP generalizes well to unseen functions!

Nguyen, Tung, and Aditya Grover. "Transformer neural processes: Uncertainty-aware meta learning via sequence modeling." ICML 2022.




[ Train to map from pixel coordinates — pixel values

a

TNPs for Image Completion

Each image is a 2-dimensional function

Image completion on unseen classes from 100 pixels

yx.

Sample2 Sample2 Samplel Context

R
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HEE
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2
o

BNP BANP TNP-A

Samples from 20 context points.



Discussion

[ TNP learns to learn in-context from scratch
QO  It's often desired in deep learning to start from a pretrained model

O  There exists powerful in-context models in other domains, e.g., large language models.

Can we transfer in-context learning from LLMs to new domains?



Today's Talk

Part 1: Learning to Learn In-context 4

How to train a model that generalizes to unseen functions via in-context conditioning?

Part 2: Cross-domain In-context Learning

How to leverage a pretrained LLM for in-context learning in an unseen domain?



Molecular Optimization

3 Problem: find the molecule that optimizes a certain property.

z* = arg min,_, f(x)

drug vee -
[ synthesizability }
\ ; /
y
bioactivity molecule
against similarity
disease
ClogP

3 Important domain and distinguished from language.




TNPs for Molecular Optimization

d  First attempt: TNPs for in-context molecular property prediction

NLL MSE RMS Cal
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LLMs for Molecular Optimization

d  Motivation: Repurpose a pretrained LLM for in-context learning in a new domain.

Translate English to French:
sea otter => loutre de mer
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese =>

task description

examples

prompt

Repurpose

>

Predict molecule synthesizability:

;Jﬁ = 0.709

MG = o261
o

06 = 0632

task description

examples

ki%éif? => prompt



LLMs for Optimization

d  Existing works directly prompt a pretrained LLM in the text space.

[  Not applicable to non-textual domains X

[ Do not generalize to underrepresented domains X

—[ 2. Surrogate model prompt |_

"

Hyperparameters: [h1], performance: [s1]

" ‘

Hyperparameters: [h,], performance: [S,]
[ " j Hyperparameters: [h], performance: ?

Liu, Tennison, et al. "Large Language Models to Enhance
Bayesian Optimization." arXiv preprint arXiv:2402.03921 (2024).

Your task is to generate the instruction <INS>. Below are some previous instructions with their scores.
The score ranges from 0 to 100.

text:
Let’s figure it out!
score:

61

text:
Let’s solve the problem.
score:

63

Generate an instruction that is different from all the instructions <INS> above, and has a higher score
than all the instructions <INS> above. The instruction should begin with <INS> and end with </INS>.
The instruction should be concise, effective, and generally applicable to all problems above.

Yang, Chengrun, et al. "Large language models as optimizers."
arXiv preprint arXiv:2309.03409 (2023).




BOLM Architecture

d  Learn separate embedding and prediction layers for the new domain
@ Domain-agnostic v
O Computationally efficient

() Text embedding @ @
() x embedding
() y embedding d} C?j
() Prediction layer T
{ Pretrained LLM ’

T

1 1 1 L [ 1
[ TJL JERIE [ r][ JERIES
@—<X>@<y>@...<x>@<y>@
\/

language tokens
to associate (x,y)

Nguyen, Tung, and Aditya Grover. "BOLM: Leveraging Large Language Models for Black-box Optimization." preprint 2024.



BOLM Training

[ Train BOLM to perform in-context learning prediction

L(O) =E

N
[Zizl log po (yi | 2, w<i,y<i)]

() Text embedding @

() x embedding
> yenbetin 0 -

() Prediction layer

fNFaw1:N7y1:N

{ Pretrained LLM ’

N [
P \an[ananlan o0

§ T r i i
B AR A S P

what is a good
function family?

Nguyen, Tung, and Aditya Grover. "BOLM: Leveraging Large Language Models for Black-box Optimization." preprint 2024.



Training Data Generation

Q Ideal family of functions F
@ Close to downstream functions
l:I Diverse

|Dunlabeled |
Dunlabeled = {JZ 4 }i: 1

{zi, f1(z:)}
f~F < X
{zi, f1(z:)}

Nguyen, Tung, and Aditya Grover. "BOLM: Leveraging Large Language Models for Black-box Optimization." preprint 2024.



Training Data Generation

Q Ideal family of functions F
@ Close to downstream functions «
l:I Diverse

|Dunlabelad |
Dunlabeled = {JZ 4 }i: 1

{zi, F1 ()}

(o0, Fol@))

Intrinsic
properties

molecular weight

#rings

# heavy atoms

Nguyen, Tung, and Aditya Grover. "BOLM: Leveraging Large Language Models for Black-box Optimization." preprint 2024.



Training Data Generation

Q Ideal family of functions F
@ Close to downstream functions «

O Diverse & Semi-synthetic training!
|Dunlabelad |
Dintavered = {%i}i_1 -
{zi, f1(z:)}
f~F ;
Intrinsic Synthetic
properties functions
molecular weight f ~ GP(0,K),
#rings , x-x
# heavy atoms K(z, ') = l|z]|2 + ||2'||? — = - 2’

Nguyen, Tung, and Aditya Grover. "BOLM: Leveraging Large Language Models for Black-box Optimization." preprint 2024.



d  Test BOLM on in-context molecular property prediction
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Prediction Results
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Nguyen, Tung, and Aditya Grover. "BOLM: Leveraging Large Language Models for Black-box Optimization." preprint 2024.
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BOLM for Black-box Optimization

d  We ultimately care about optimization
[  We consider the online setting

Algorithm 1 Black-box optimization with BOLM

Require: objective f, fine-tuned LLM surrogate fy, budget B,
candidate pool size C, acquisition function ¢, batch size k
Initialize Dops = {}
while |Dg,s| < B do

___________________________ - Evolutionary

tor r each candidate z; 1-1:0: :_'_'_' """ BOLM
IPredlct iy 05 = fol @Z, obs L
\Compute ulility Score u = ¢ 9_ (i, 3] uce
end for

Select k candidates with the highest utility scores
for each selected candidate x; do
Evaluate x; using the actual objective y; = f(z;)
Add (z;,y;) to the observation dataset Dobs
end for
end while

Nguyen, Tung, and Aditya Grover. "BOLM: Leveraging Large Language Models for Black-box Optimization." preprint 2024.



PMO Benchmark

Task

albuterol_similarity
amlodipine_mpo
celecoxib_rediscovery
deco_hop
drd2
fexofenadine_mpo
isomers_c7h8n202
isomers_c9%hl0n202pf2cl
medianl
median2

Nguyen, Tung, and Aditya Grover. "BOLM: Leveraging Large Language Models for Black-box Optimization." preprint 2024.

d  We test (a single) BOLM on 21 benchmark optimization tasks from PMO

Task

mestranol_similarity
osimertinib_mpo
perindopril_mpo
ged
ranolazine_mpo
scaffold_hop
sitagliptin_mpo
thiothixene_rediscovery
troglitazone_rediscovery
valsartan_smarts
zaleplon_mpo




Experiments

d  We test (a single) BOLM on 21 benchmark optim

Sum of scores (1)

1.5

mm GPBO B Graph GA mEE BOLM

3.5¢

3.0

25}

2.0

ization tasks

Mean rank ({)

B REINVENT  mmm TNP

BOLM achieves the best overall scores and ranking!

Nguyen, Tung, and Aditya Grover. "BOLM: Leveraging Large Language Models for Black-box Optimization." preprint 2024.



Ablation Studies

O Importance of semi-synthetic training

3.075}|
3.050
3.025
3.000

2.975

Sum of scores across 5 tasks

N
©
o
o

2925

2.900

B Intrinsic B 0.1 Synthetic I 0.5 Synthetic B Synthetic

Semi-synthetic is better than intrinsic or synthetic alone

Nguyen, Tung, and Aditya Grover. "BOLM: Leveraging Large Language Models for Black-box Optimization." preprint 2024.



Ablation Studies

O Importance of language instruction

0.8
0.7
0.6
0.5

0.4

albuterol_similarity ~ amlodipine_mpo celecoxib_rediscovery deco_hop

Im W/ Language B W/o Language

Language instruction is crucial to BOLM

Nguyen, Tung, and Aditya Grover. "BOLM: Leveraging Large Language Models for Black-box Optimization." preprint 2024.



Summary

d  We can train a model to learn in-context
O In-context learning can generalize from synthetic to real functions
O In-context learning can be transferred across domains

[ End goal: have a GPT-like model that scientists can use to optimize arbitrary objectives

Molecules

4
%A 7 SN ¢ Robotics
> E PO~ %’
- g DA

Black-box

Optimization

e . )&(,
Hyperparameters % Material Design

Proteins



Future Work

[ Improve generality
0 Foundation models that can perform cross-domain optimization
[ Improve performance

O  Scale up data and model size

O Parameter-efficient finetuning
[ Foundation models for end-to-end optimization

O Candidate generation, exploration, surrogate modeling, etc.



Thank Youl!
Q&A



