Deep Generative Models

Lecture 3: Maximum Likelihood Learning

Aditya Grover

UCLA

1/100

Learning a generative model

e Given: a training set of examples, e.g., images of dogs

d(Paatar Po)
o L(Paarar "0
Pyata 4

6eM

0D
j=12,..m

~Pgata

e Goal: learn a probability distribution p(x) over images x
e Generation: If we sample x,e, ~ p(X), Xpew should look like a
dog (sampling)
e Density estimation: p(x) should be high if x looks like a dog,

and low otherwise (anomaly detection)

e First question: how to represent py(x). Second question: how to
learn it.

2 /100

e Lets assume that the domain is governed by some underlying
distribution Pgata

e We are given a dataset D of m samples from Pgata

e Each sample is an assignment of values to the variables, e.g.,
(Xbank = 1, Xdollar = 0, ..., Y = 1) or pixel intensities.
e The standard assumption is that the data instances are

independent and identically distributed (11D)

e We are also given a family of models M, and our task is to learn
parameters € of some “good” model Py € M

e For example, a FVSBN for all possible choices of the logistic
regression parameters. M = {Py,0 € ©}, 6 = concatenation of all
logistic regression coefficients

3 /100

Goal of learning

e The goal of learning is to return a model Py that precisely captures
the distribution Pg,t, from which our data was sampled

e This is in general not achievable because of

e limited data only provides a rough approximation of the true
underlying distribution
e computational reasons

e Example. Suppose we represent each image with a vector X of 784
binary variables (black vs. white pixel). How many possible states
(= possible images) in the model? 2784 ~ 1023¢. Even 107 training
examples provide extremely sparse coverage!

e We want to select Py to construct the "best” approximation to the
underlying distribution Pqaga

e What is “best”?

4 /100

KL-divergence

e How should we measure distance between distributions?

e The Kullback-Leibler divergence (KL-divergence) between
two distributions p and ¢ is defined as

D(pl|q) = Zp

e D(p|l q) > 0 for all p,q, with equality if and only if p = g.
Proof:

s [1 23] > g (e [23]) = -1 (o002)

o Notice that KL-divergence is asymmetric, i.e.,

D(pllq) # D(allp)

5 /100

Detour on KL-divergence

e Knowledge of the data distribution aids compression
e For example, let Xi, -+, X100 be samples of an unbiased coin.
Roughly 50 heads and 50 tails. Optimal compression scheme
is to record heads as 0 and tails as 1. In expectation, use 1 bit
per sample, and cannot do better
e Suppose the coin is biased, and P[H] > P[T]. Then it's more
efficient to uses fewer bits on average to represent heads and
more bits to represent tails, e.g.
e Batch multiple samples together
e Use a short sequence of bits to encode HHHH (common) and
a long sequence for TTTT (rare).
o Like Morse code: E=9o, A=0e—, Q = — — o—
e Kl-divergence: if your data comes from p, but you use a
scheme optimized for g, the divergence Dk, (pl||q) is the

number of extra bits you'll need on average
6 /100

Learning as density estimation

e We want to construct Py as "close” as possible to Pgat. (recall we
assume we are given a dataset D of samples from Pgat.)

e How do we evaluate " closeness”?

e KL-divergence is one possibility:

Pgata(Padata(x
D(PdataHPG) = EXNPG[Ma |:|Og (dat):l Z Pddtd. dPet(d)E))

e D(Pqatal|Po) = 0 iff the two distributions are the same.

e |t measures the " compression loss” (in bits) of using Py instead of
Pdata-

7 /100

Expected log-likelihood

e We can simplify this somewhat:

Pdata(x)>:|

Exp,,, |log | —S22222

[g(Po(x)

= ExPyu. [108 Paata(X)] — Ex~py,,. [log Po(x)]

D(PdataHPG)

e The first term does not depend on Py.

e Then, minimizing KL divergence is equivalent to maximizing the
expected log-likelihood
e Asks that Py assign high probability to instances sampled from
Piata, SO as to reflect the true distribution
e Because of log, samples x where Py(x) =~ 0 weigh heavily in
objective

e Although we can now compare models, since we are ignoring
H(Paiata), we don't know how close we are to the optimum

e Problem: In general we do not know Pg,¢..
8 /100

Maximum likelihood estimation

e Approximate the expected log-likelihood

ExPiaca [l0g Po(x)]

with the empirical log-likelihood.

Ep [log Py(x = Z log Py(x
x€D

e Learning using Maximum likelihood estimation:

max @ Z log Py(x

e Note: Equivalent to maximizing joint likelihood of the data under
iid. Py(xW, -+ x(M) =TT p Po(x)

9/100

Single variable example: A biased coin

e Two outcomes: heads (H) and tails (T)

e Data set: Tosses of the biased coin, e.g.,
D={H,H, T,H, T}

e Assumption: the process is controlled by a probability
distribution Pgata(x) where x € {H, T}

e Class of models M: all probability distributions over
xe{H, T}.

e Example learning task: How should we choose Py(x) from M
if 60 out of 100 tosses are heads in D7

10 /100

MLE scoring for the coin example

We represent our model: Pg(x = H) =60 and Py(x =T)=1-16

e Example data: D={H,H, T,H, T}
e Likelihood of data = [[; Pg(xj) =0-60-(1—6)-0-(1—6)

L(6:D)

0 0.2 0.4 0.6 0.8 1
2]

e Optimize for # which makes D most likely. What is the

solution in this case?

11 /100

MLE scoring for the coin example: Analytical derivation

Distribution: Pg(x = H) =60 and Py(x =T)=1-6

e More generally, log-likelihood function

L(@) _ Q#heads . (1 o 0)#tails
Iog L(Q) _ |Og(9#heads . (1 o 9)#tai15)
= #heads - log(8) + #tails - log(1 — 6)

e MLE Goal: Find #* € [0, 1] such that log L(6*) is maximum.
e Differentiate the log-likelihood function with respect to 6 and
set the derivative to zero. We get:
heads
- #heads + #tails

*

12 /100

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization
n
PQ(X) = H pneural(xi|x<i; 9/)
i=1

0 = (01, ,0,) are the parameters of all the conditionals.
Training data D = {xM), ... x(M} Maximum likelihood estimate

of the parameters 07
e Decomposition of Likelihood function
L(Ha D) = H P@(X(’I)) = H H pneural(x,'(j)|x(i);; ‘91)
=1 j=1i=1
e Goal : maximize arg maxy L(6, D) = arg maxg log L(6, D)

e We no longer have a closed form solution

13 /100

MLE Learning: Gradient Descent

[_((9 D) = ﬁ H H pneurdl 9)

j=1i=1
Goal : maximize arg maxy L(6, D) = arg maxg log L(0, D)

n

E(Q) |Og L (9 D Z Z |Og pneural J ’ g?v 9)
Jj=1i=1

1. Initialize #° = (61,--- ,6,) at random
2. Compute Vy/l(6) (by back propagation)
3. 01 = 0t + 4, Vyl(0)

Non-convex optimization problem, but often works well in practice

14 /100

MLE Learning: Gradient Descent

m n

0(0) = log L(6,D) = > > 10g Pucurar(xx7); 07)

j=1 i=1

e Discrete x;'s (e.g., language models): Equivalent to classification
where we predict label of X; given x.;. Reduces to cross-entropy
loss for categorical ppeural(Xi|X<i; 0;)

e Continuous x;'s (e.g., speech): Equivalent to regression where we
predict label of X; given x.;. Reduces to mean-squared error (+
variance terms) for Gaussian ppeural(Xi|X</; 6;)

What is the gradient with respect to 6,7
VQ g Z ve Z |Og pneurwl |xi),r 9 Z VQ,- |0g pneural(X,'(j) ‘X(i),y 91)

j=1
Each conditional pheural(Xi|X<i; ;) can be optimized separately if there is
no parameter sharing. In practice, parameters 6; are shared (e.g., NADE,
PixelRNN, PixelCNN, etc.) 15 /100

MLE Learning: Same tricks as supervised learning

m n

0(0) = log L(6,D) = > > 10g Pucurar(xx7); 07)

j=1 i=1
1. Initialize #° at random
2. Compute Vg/(0) (by back propagation)
3. 01 = 0' + o, Vel(0)

Vef(e Z Z Vg log pneural((J)| (J) ; 91)
Jj=1

i=1

e What if m = |D| is huge? Use mini-batches

e What if the model overfits? Intuition for overfitting: High likelihood
on training set, low likelihood on test set (e.g., new images of dogs
outside D)

16 /100

How to avoid overfitting?

e Hard constraints, e.g. by selecting a less expressive model family:

e Smaller neural networks with less parameters
e Weight sharing

d(Paata P o)

P data

xD~Pgata 0EM

j=12,...,m

e Soft preference for “simpler’ models: Occam Razor.

e Augment the objective function with regularization:
objective(x, M) = loss(x, M) + R(M)

e Evaluate generalization performance on a held-out validation set

17 /100

Conditional generative models

e Suppose we want to generate a set of variables X given some
others Y, e.g., text to speech, image captioning, machine
translation

e We model Py(x | y), and use a conditional loss function

—E(xy)~pllog Py(x | y)].

e Since the loss function only depends on Py(x | y), suffices to
estimate the conditional distribution, not the joint
e We can factorize the joint distribution autoregressively:

X|y HP@(X,‘X<,,y)

i=1

Brown horse in
grass field

Ouput capion 18 /100

Input :image

