
Deep Generative Models

Lecture 3: Maximum Likelihood Learning

Aditya Grover

UCLA

1 / 100

Learning a generative model

• Given: a training set of examples, e.g., images of dogs

• Goal: learn a probability distribution p(x) over images x

• Generation: If we sample xnew ∼ p(x), xnew should look like a

dog (sampling)

• Density estimation: p(x) should be high if x looks like a dog,

and low otherwise (anomaly detection)

• First question: how to represent pθ(x). Second question: how to

learn it.

2 / 100

Setting

• Lets assume that the domain is governed by some underlying

distribution Pdata

• We are given a dataset D of m samples from Pdata

• Each sample is an assignment of values to the variables, e.g.,

(Xbank = 1,Xdollar = 0, ...,Y = 1) or pixel intensities.

• The standard assumption is that the data instances are

independent and identically distributed (IID)

• We are also given a family of models M, and our task is to learn

parameters θ of some “good” model Pθ ∈M

• For example, a FVSBN for all possible choices of the logistic

regression parameters. M = {Pθ, θ ∈ Θ}, θ = concatenation of all

logistic regression coefficients

3 / 100

Goal of learning

• The goal of learning is to return a model Pθ that precisely captures

the distribution Pdata from which our data was sampled

• This is in general not achievable because of

• limited data only provides a rough approximation of the true

underlying distribution

• computational reasons

• Example. Suppose we represent each image with a vector X of 784

binary variables (black vs. white pixel). How many possible states

(= possible images) in the model? 2784 ≈ 10236. Even 107 training

examples provide extremely sparse coverage!

• We want to select Pθ to construct the ”best” approximation to the

underlying distribution Pdata

• What is “best”?

4 / 100

KL-divergence

• How should we measure distance between distributions?

• The Kullback-Leibler divergence (KL-divergence) between

two distributions p and q is defined as

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)
.

• D(p ‖ q) ≥ 0 for all p, q, with equality if and only if p = q.
Proof:

Ex∼p

[
− log

q(x)

p(x)

]
≥ − log

(
Ex∼p

[
q(x)

p(x)

])
= − log

(∑
x

p(x)
q(x)

p(x)

)
= 0

• Notice that KL-divergence is asymmetric, i.e.,

D(p‖q) 6= D(q‖p)

5 / 100

Detour on KL-divergence

• Knowledge of the data distribution aids compression

• For example, let X1, · · · ,X100 be samples of an unbiased coin.

Roughly 50 heads and 50 tails. Optimal compression scheme

is to record heads as 0 and tails as 1. In expectation, use 1 bit

per sample, and cannot do better
• Suppose the coin is biased, and P[H]� P[T]. Then it’s more

efficient to uses fewer bits on average to represent heads and
more bits to represent tails, e.g.
• Batch multiple samples together

• Use a short sequence of bits to encode HHHH (common) and

a long sequence for TTTT (rare).

• Like Morse code: E = •, A = •−, Q = −− •−
• KL-divergence: if your data comes from p, but you use a

scheme optimized for q, the divergence DKL(p||q) is the

number of extra bits you’ll need on average
6 / 100

Learning as density estimation

• We want to construct Pθ as ”close” as possible to Pdata (recall we

assume we are given a dataset D of samples from Pdata)

• How do we evaluate ”closeness”?

• KL-divergence is one possibility:

D(Pdata||Pθ) = Ex∼Pdata

[
log

(
Pdata(x)

Pθ(x)

)]
=
∑

x

Pdata(x) log
Pdata(x)

Pθ(x)

• D(Pdata||Pθ) = 0 iff the two distributions are the same.

• It measures the ”compression loss” (in bits) of using Pθ instead of

Pdata.

7 / 100

Expected log-likelihood

• We can simplify this somewhat:

D(Pdata||Pθ) = Ex∼Pdata

[
log

(
Pdata(x)

Pθ(x)

)]
= Ex∼Pdata

[logPdata(x)]− Ex∼Pdata
[logPθ(x)]

• The first term does not depend on Pθ.

• Then, minimizing KL divergence is equivalent to maximizing the

expected log-likelihood

• Asks that Pθ assign high probability to instances sampled from

Pdata, so as to reflect the true distribution

• Because of log, samples x where Pθ(x) ≈ 0 weigh heavily in

objective

• Although we can now compare models, since we are ignoring

H(Pdata), we don’t know how close we are to the optimum

• Problem: In general we do not know Pdata.
8 / 100

Maximum likelihood estimation

• Approximate the expected log-likelihood

Ex∼Pdata
[logPθ(x)]

with the empirical log-likelihood:

ED [logPθ(x)] =
1

|D|
∑
x∈D

logPθ(x)

• Learning using Maximum likelihood estimation:

max
Pθ

1

|D|
∑
x∈D

logPθ(x)

• Note: Equivalent to maximizing joint likelihood of the data under

i.i.d. Pθ(x(1), · · · , x(m)) =
∏

x∈D Pθ(x)

9 / 100

Example

Single variable example: A biased coin

• Two outcomes: heads (H) and tails (T)

• Data set: Tosses of the biased coin, e.g.,

D = {H,H,T ,H,T}
• Assumption: the process is controlled by a probability

distribution Pdata(x) where x ∈ {H,T}
• Class of models M: all probability distributions over

x ∈ {H,T}.
• Example learning task: How should we choose Pθ(x) from M

if 60 out of 100 tosses are heads in D?

10 / 100

MLE scoring for the coin example

We represent our model: Pθ(x = H) = θ and Pθ(x = T) = 1− θ

• Example data: D = {H,H,T ,H,T}
• Likelihood of data =

∏
i Pθ(xi) = θ · θ · (1− θ) · θ · (1− θ)

• Optimize for θ which makes D most likely. What is the

solution in this case?

11 / 100

MLE scoring for the coin example: Analytical derivation

Distribution: Pθ(x = H) = θ and Pθ(x = T) = 1− θ

• More generally, log-likelihood function

L(θ) = θ#heads · (1− θ)#tails

log L(θ) = log(θ#heads · (1− θ)#tails)

= #heads · log(θ) + #tails · log(1− θ)

• MLE Goal: Find θ∗ ∈ [0, 1] such that log L(θ∗) is maximum.

• Differentiate the log-likelihood function with respect to θ and

set the derivative to zero. We get:

θ∗ =
#heads

#heads + #tails

12 / 100

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization

Pθ(x) =
n∏

i=1

pneural(xi |x<i ; θi)

θ = (θ1, · · · , θn) are the parameters of all the conditionals.

Training data D = {x(1), · · · , x(m)}. Maximum likelihood estimate

of the parameters θ?

• Decomposition of Likelihood function

L(θ,D) =
m∏
j=1

Pθ(x(j)) =
m∏
j=1

n∏
i=1

pneural(x
(j)
i |x

(j)
<i ; θi)

• Goal : maximize arg maxθ L(θ,D) = arg maxθ log L(θ,D)

• We no longer have a closed form solution

13 / 100

MLE Learning: Gradient Descent

L(θ,D) =
m∏
j=1

Pθ(x(j)) =
m∏
j=1

n∏
i=1

pneural(x
(j)
i |x

(j)
<i ; θi)

Goal : maximize arg maxθ L(θ,D) = arg maxθ log L(θ,D)

`(θ) = log L(θ,D) =
m∑
j=1

n∑
i=1

log pneural(x
(j)
i |x

(j)
<i ; θi)

1. Initialize θ0 = (θ1, · · · , θn) at random

2. Compute ∇θ`(θ) (by back propagation)

3. θt+1 = θt + αt∇θ`(θ)

Non-convex optimization problem, but often works well in practice

14 / 100

MLE Learning: Gradient Descent

`(θ) = log L(θ,D) =
m∑
j=1

n∑
i=1

log pneural(x
(j)
i |x

(j)
<i ; θi)

• Discrete xi ’s (e.g., language models): Equivalent to classification

where we predict label of Xi given x<i . Reduces to cross-entropy

loss for categorical pneural(xi |x<i ; θi)

• Continuous xi ’s (e.g., speech): Equivalent to regression where we

predict label of Xi given x<i . Reduces to mean-squared error (+

variance terms) for Gaussian pneural(xi |x<i ; θi)

What is the gradient with respect to θi?

∇θi `(θ) =
m∑
j=1

∇θi
n∑

i=1

log pneural(x
(j)
i |x

(j)
<i ; θi) =

m∑
j=1

∇θi log pneural(x
(j)
i |x

(j)
<i ; θi)

Each conditional pneural(xi |x<i ; θi) can be optimized separately if there is

no parameter sharing. In practice, parameters θi are shared (e.g., NADE,

PixelRNN, PixelCNN, etc.) 15 / 100

MLE Learning: Same tricks as supervised learning

`(θ) = log L(θ,D) =
m∑
j=1

n∑
i=1

log pneural(x
(j)
i |x

(j)
<i ; θi)

1. Initialize θ0 at random

2. Compute ∇θ`(θ) (by back propagation)

3. θt+1 = θt + αt∇θ`(θ)

∇θ`(θ) =
m∑
j=1

n∑
i=1

∇θ log pneural(x
(j)
i |x

(j)
<i ; θi)

• What if m = |D| is huge? Use mini-batches

• What if the model overfits? Intuition for overfitting: High likelihood

on training set, low likelihood on test set (e.g., new images of dogs

outside D)

16 / 100

How to avoid overfitting?

• Hard constraints, e.g. by selecting a less expressive model family:

• Smaller neural networks with less parameters

• Weight sharing

• Soft preference for “simpler” models: Occam Razor.

• Augment the objective function with regularization:

objective(x,M) = loss(x,M) + R(M)

• Evaluate generalization performance on a held-out validation set

17 / 100

Conditional generative models

• Suppose we want to generate a set of variables X given some

others Y, e.g., text to speech, image captioning, machine

translation

• We model Pθ(x | y), and use a conditional loss function

−E(x,y)∼D [logPθ(x | y)].

• Since the loss function only depends on Pθ(x | y), suffices to

estimate the conditional distribution, not the joint

• We can factorize the joint distribution autoregressively:

Pθ(x | y) =
n∏

i=1

Pθ(xi | x<i , y)

18 / 100

