
Deep Generative Models

Lecture 5: Variational Autoencoders

Aditya Grover

UCLA

1 / 100



Plan for today

1. Latent Variable Models

• Learning deep generative models

• Stochastic optimization:

• Reparameterization trick

• Inference Amortization
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Variational Autoencoder

A mixture of an infinite number of Gaussians:

1. z ∼ N (0, I )

2. pθ(x | z) = N (µθ(z),Σθ(z)) where µθ,Σθ are neural networks

3. Even though p(x | z) is simple, the marginal p(x) is very

complex/flexible
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Recap

• Latent Variable Models

• Allow us to define complex models p(x) in terms of simple

building blocks p(x | z)

• Natural for unsupervised learning tasks (clustering,

unsupervised representation learning, etc.)

• No free lunch: much more difficult to learn compared to fully

observed, autoregressive models
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Recap: Variational Inference

• Suppose q(z) is any probability distribution over the hidden
variables

DKL(q(z)‖pθ(z|x)) = −
∑
z

q(z) log pθ(z, x) + log pθ(x)− H(q) ≥ 0

• Evidence lower bound (ELBO) holds for any q

log pθ(x) ≥
∑
z

q(z) log pθ(z, x) + H(q)

• Equality holds if q = pθ(z|x)

log pθ(x)=
∑
z

q(z) log pθ(z, x) + H(q)
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Recap: The Evidence Lower bound

• What if the posterior pθ(z|x) is intractable to compute?

• Suppose qφ(z) is a (tractable) probability distribution over the

hidden variables parameterized by φ (variational parameters)

• E.g., a Gaussian with mean and covariance specified by φ

qφ(z) = N (φ1, φ2)

• Variational inference: pick φ so that qφ(z) is as close as possible

to pθ(z|x). In the figure, the posterior pθ(z|x) (blue) is better

approximated by N (2, 2) (orange) than N (−4, 0.75) (green)
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Recap: The Evidence Lower bound

log pθ(x) ≥
∑
z

qφ(z) log pθ(z, x) + H(qφ(z)) = L(x; θ, φ)︸ ︷︷ ︸
ELBO

= L(x; θ, φ) + DKL(qφ(z)‖pθ(z|x))

The better qφ(z) can approximate the posterior pθ(z|x), the

smaller DKL(qφ(z)‖pθ(z|x)) we can achieve, the closer ELBO will

be to log pθ(x). Next: jointly optimize over θ and φ to maximize
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Variational learning

L(x; θ, φ1) and L(x; θ, φ2) are both lower bounds. We want to

jointly optimize θ and φ.
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The Evidence Lower bound applied to the entire dataset

• Evidence lower bound (ELBO) holds for any qφ(z)

log pθ(x) ≥
∑
z

qφ(z) log pθ(z, x) + H(qφ(z)) = L(x; θ, φ)︸ ︷︷ ︸
ELBO

• Maximum likelihood learning (over the entire dataset):

`(θ;D) =
∑
xi∈D

log p(xi ; θ) ≥
∑
xi∈D

L(xi ; θ, φi )

• Therefore

max
θ
`(θ;D) ≥ max

θ,φ1,··· ,φM

∑
xi∈D

L(xi ; θ, φi )

• Note that we use different variational parameters φi for every data

point xi , because the true posterior pθ(z|xi ) is different across

datapoints xi
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A variational approximation to the posterior

• Assume pθ(z, xi ) is close to pdata(z, xi ). Suppose z captures

information such as the digit identity (label), style, etc. For

simplicity, assume z ∈ {0, 1, 2, · · · , 9}.

• Suppose qφi (z) is a (categorical) probability distribution over the

hidden variable z parameterized by φi = [p0, p1, · · · , p9]

qφi (z) =
∏

k∈{0,1,2,··· ,9}

(φik)1[z=k]

• If φi = [0, 0, 0, 1, 0, · · · , 0], is qφi (z) a good approximation of

pθ(z|x1) (x1 is the leftmost datapoint)? Yes

• If φi = [0, 0, 0, 1, 0, · · · , 0], is qφi (z) a good approximation of

pθ(z|x3) (x3 is the rightmost datapoint)? No

• For each xi , need to find a good φi∗ (via optimization, can be

expensive).
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Learning latent variable models

Optimize
∑

xi∈D L(xi ; θ, φi ) w.r.t. θ, φ1, · · · , φM using SGD

L(xi ; θ, φi ) =
∑
z

qφi (z) log pθ(z, xi ) + H(qφi (z))

= Eq
φi
(z)[log pθ(z, xi )− log qφi (z)]

1. Initialize θ, φ1, · · · , φM

2. Randomly sample a data point xi from D
3. Optimize L(xi ; θ, φi ) as a function of φi :

3.1 Repeat φi = φi + η∇φiL(xi ; θ, φi )

3.2 until convergence to φi∗ ≈ arg maxφ L(xi ; θ, φ)

4. Compute ∇θL(xi ; θ, φi∗)

5. Update θ in the gradient direction. Go to step 2

How to compute gradients in Steps 4,5? Potentially no closed form

solution for the expectations. Use Monte Carlo sampling.
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Learning latent variable models

L(x; θ, φ) =
∑
z

qφ(z) log pθ(z, x) + H(qφ(z))

= Eqφ(z)[log pθ(z, x)− log qφ(z)]

• Note: dropped i superscript from xi , φi for compactness

• To evaluate the bound, use Monte Carlo. Sample zk ∼ qφ(z)

and estimate:

Eqφ(z)[log pθ(z, x)−log qφ(z)] ≈ 1

k

∑
k

log pθ(zk , x)−log qφ(zk))

• Key assumption: qφ(z) is easy to sample from and evaluate

• How to compute gradients ∇θL(x; θ, φ) and ∇φL(x; θ, φ)?
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Learning latent variable models

L(x; θ, φ) =
∑
z

qφ(z) log pθ(z, x) + H(qφ(z))

= Eqφ(z)[log pθ(z, x)− log qφ(z)]

• Want to compute ∇θL(x; θ, φ) and ∇φL(x; θ, φ)

• The gradient with respect to θ is easy with Monte Carlo:

∇θEqφ(z)[log pθ(z, x)− log qφ(z)] = Eqφ(z)[∇θ log pθ(z, x)]

≈ 1

k

∑
k

∇θ log pθ(zk , x)

where zk ∼ qφ(z).

• The gradient with respect to φ is more complicated because the

expectation depends on φ

• We still want to estimate with a Monte Carlo average
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Reparameterization

• Assume z is now continuous [more general solution called

REINFORCE later in course]

• Goal compute gradient w.r.t. φ of Eqφ(z)[r(z)] =
∫
qφ(z)r(z)dz

• Suppose qφ(z) = N (µ, σ2I ) is Gaussian with parameters φ = (µ, σ).

These are equivalent ways of sampling:

• Sample z ∼ qφ(z)

• Sample ε ∼ N (0, I ), z = µ+ σε = gφ(ε)

• Using this equivalence we compute the expectation in two ways:

Ez∼qφ(z)[r(z)] = Eε∼N (0,I )[r(gφ(ε))] =

∫
p(ε)r(µ+ σε)dε

∇φEqφ(z)[r(z)] = ∇φEε[r(gφ(ε))] = Eε[∇φr(gφ(ε))]

• Easy to estimate via Monte Carlo if r and g are differentiable w.r.t.

φ and ε is easy to sample from (backpropagation)

• Eε[∇φr(gφ(ε))] ≈ 1
k

∑
k ∇φr(gφ(εk)) where ε1, · · · , εk ∼ N (0, I ).

• Typically much lower variance than REINFORCE 14 / 100



Learning Deep Generative models

L(x; θ, φ) =
∑
z

qφ(z) log pθ(z, x) + H(qφ(z))

= Eqφ(z)[log pθ(z, x)− log qφ(z)︸ ︷︷ ︸
rφ(z)

]

• Our case might seem slightly more complicated because we have

Eqφ(z)[rφ(z)] instead of Eqφ(z)[r(z)]. Term inside the expectation

also depends on φ.

• Can still use reparameterization. Assume z = µ+ σε = gφ(ε) like

before. Then

Eqφ(z)[rφ(z)] = Eε[r(gφ(ε), φ)]

≈ 1

k

∑
k

r(g(εk ;φ), φ)
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Amortized Inference

max
θ
`(θ;D) ≥ max

θ,φ1,··· ,φM

∑
xi∈D

L(xi ; θ, φi )

• So far we have used a set of variational parameters φi for each

data point xi . Does not scale to large datasets.

• Amortization: Now we learn a single parametric function
that maps each x to a set of (good) variational parameters.
Like doing regression on xi 7→ φi∗

• For example, instead of learning qφi (z) as Gaussians with

different means µ1, · · · , µm and covariances Σ1, · · · ,Σm, we

can learn a single shared neural network qφ(z|x) that maps

any xi to corresponding mean µi and covariance Σi
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Learning with amortized inference

• Optimize
∑

xi∈D L(xi ; θ, φ) w.r.t. θ, φ using (stochastic)

gradient descent

L(x; θ, φ) =
∑
z

qφ(z|x) log pθ(z, x) + H(qφ(z|x))

= Eqφ(z|x)[log pθ(z, x)− log qφ(z|x))]

1. Initialize θ(0), φ(0)

2. Randomly sample a data point xi from D
3. Compute ∇θL(xi ; θ, φ) and ∇φL(xi ; θ, φ)

4. Update θ, φ in the gradient direction

• How to compute the gradients? Use reparameterization like

before
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Autoencoder perspective

L(x; θ, φ) = Eqφ(z|x)[log pθ(z, x)− log qφ(z|x))]

= Eqφ(z|x)[log pθ(z, x)− log p(z) + log p(z)− log qφ(z|x))]

= Eqφ(z|x)[log p(x|z; θ)]− DKL(qφ(z|x)‖p(z))

1. Take a data point xi

2. Map it to ẑ by sampling from qφ(z|xi ) (encoder)

3. Reconstruct x̂ by sampling from p(x|ẑ; θ) (decoder)

What does the training objective L(x; θ, φ) do?

• First term encourages x̂ ≈ xi (xi likely under p(x|ẑ; θ))

• Second term encourages ẑ to be likely under the prior p(z)
18 / 100



Learning Deep Generative models

1. Alice goes on a space mission and needs to send images to

Bob. Given an image xi , she (stochastically) compresses it

using ẑ ∼ qφ(z|xi ) obtaining a message ẑ. Alice sends the

message ẑ to Bob

2. Given ẑ, Bob tries to reconstruct the image using p(x|ẑ; θ)

• This scheme works well if Eqφ(z|x)[log p(x|z; θ)] is large

• The term DKL(qφ(z|x)‖p(z)) forces the distribution over

messages to have a specific shape p(z). If Bob knows p(z), he

can generate realistic messages ẑ ∼ p(z) and the

corresponding image, as if he had received them from Alice!
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Summary of Latent Variable Models

1. Combine simple models to get a more flexible one (e.g.,

mixture of Gaussians)

2. Directed model permits ancestral sampling (efficient

generation): z ∼ p(z), x ∼ p(x|z; θ)

3. However, log-likelihood is generally intractable, hence learning

is difficult

4. Joint learning of a model (θ) and an amortized inference

component (φ) to achieve tractability via ELBO optimization

5. Latent representations for any x can be inferred via qφ(z|x)
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Research Directions

Improving variational learning via:

1. Better optimization techniques

2. More expressive approximating families

3. Alternate loss functions

21 / 100


