Deep Generative Models

Lecture 5: Variational Autoencoders

Aditya Grover

UCLA

- 1. Latent Variable Models
 - Learning deep generative models
 - Stochastic optimization:
 - Reparameterization trick
 - Inference Amortization

Variational Autoencoder

A mixture of an infinite number of Gaussians:

- 1. $\mathbf{z} \sim \mathcal{N}(0, I)$
- 2. $p_{\theta}(\mathbf{x} \mid \mathbf{z}) = \mathcal{N}(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z}))$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks
- Even though p(x | z) is simple, the marginal p(x) is very complex/flexible

- Latent Variable Models
 - Allow us to define complex models p(x) in terms of simple building blocks p(x | z)
 - Natural for unsupervised learning tasks (clustering, unsupervised representation learning, etc.)
 - No free lunch: much more difficult to learn compared to fully observed, autoregressive models

Recap: Variational Inference

• Suppose *q*(**z**) is **any** probability distribution over the hidden variables

$$D_{\mathcal{KL}}(q(\mathbf{z}) \| p_{\theta}(\mathbf{z} | \mathbf{x})) = -\sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{z}, \mathbf{x}) + \log p_{\theta}(\mathbf{x}) - H(q) \ge 0$$

• Evidence lower bound (ELBO) holds for any q

$$\log p_{\theta}(\mathbf{x}) \geq \sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{z}, \mathbf{x}) + H(q)$$

• Equality holds if $q = p_{\theta}(\mathbf{z}|\mathbf{x})$ $\log p_{\theta}(\mathbf{x}) = \sum_{\mathbf{z}} q(\mathbf{z}) \log p_{\theta}(\mathbf{z}, \mathbf{x}) + H(q)$

Recap: The Evidence Lower bound

- What if the posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$ is intractable to compute?
- Suppose q_φ(z) is a (tractable) probability distribution over the hidden variables parameterized by φ (variational parameters)

+ E.g., a Gaussian with mean and covariance specified by
$$\phi$$

$$q_{\phi}(\mathsf{z}) = \mathcal{N}(\phi_1, \phi_2)$$

• Variational inference: pick ϕ so that $q_{\phi}(\mathbf{z})$ is as close as possible to $p_{\theta}(\mathbf{z}|\mathbf{x})$. In the figure, the posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$ (blue) is better approximated by $\mathcal{N}(2,2)$ (orange) than $\mathcal{N}(-4,0.75)$ (green)

Recap: The Evidence Lower bound

$$\begin{split} \log p_{\theta}(\mathbf{x}) &\geq \sum_{\mathbf{z}} q_{\phi}(\mathbf{z}) \log p_{\theta}(\mathbf{z}, \mathbf{x}) + H(q_{\phi}(\mathbf{z})) = \underbrace{\mathcal{L}(\mathbf{x}; \theta, \phi)}_{\text{ELBO}} \\ &= \mathcal{L}(\mathbf{x}; \theta, \phi) + D_{KL}(q_{\phi}(\mathbf{z}) \| p_{\theta}(\mathbf{z} | \mathbf{x})) \end{split}$$

The better $q_{\phi}(\mathbf{z})$ can approximate the posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$, the smaller $D_{KL}(q_{\phi}(\mathbf{z})||p_{\theta}(\mathbf{z}|\mathbf{x}))$ we can achieve, the closer ELBO will be to log $p_{\theta}(\mathbf{x})$. Next: jointly optimize over θ and ϕ to maximize the ELBO over a dataset

Variational learning

 $\mathcal{L}(\mathbf{x}; \theta, \phi_1)$ and $\mathcal{L}(\mathbf{x}; \theta, \phi_2)$ are both lower bounds. We want to jointly optimize θ and ϕ .

The Evidence Lower bound applied to the entire dataset

• Evidence lower bound (ELBO) holds for any $q_{\phi}(\mathbf{z})$

$$\log p_{\theta}(\mathbf{x}) \geq \sum_{\mathbf{z}} q_{\phi}(\mathbf{z}) \log p_{\theta}(\mathbf{z}, \mathbf{x}) + H(q_{\phi}(\mathbf{z})) = \underbrace{\mathcal{L}(\mathbf{x}; \theta, \phi)}_{\text{ELBO}}$$

• Maximum likelihood learning (over the entire dataset):

$$\ell(\theta; \mathcal{D}) = \sum_{\mathbf{x}^i \in \mathcal{D}} \log p(\mathbf{x}^i; \theta) \geq \sum_{\mathbf{x}^i \in \mathcal{D}} \mathcal{L}(\mathbf{x}^i; \theta, \phi^i)$$

• Therefore

$$\max_{\theta} \ell(\theta; \mathcal{D}) \geq \max_{\theta, \phi^1, \cdots, \phi^M} \sum_{\mathbf{x}^i \in \mathcal{D}} \mathcal{L}(\mathbf{x}^i; \theta, \phi^i)$$

 Note that we use different variational parameters φⁱ for every data point xⁱ, because the true posterior p_θ(z|xⁱ) is different across datapoints xⁱ

A variational approximation to the posterior

- Assume p_θ(z, xⁱ) is close to p_{data}(z, xⁱ). Suppose z captures information such as the digit identity (label), style, etc. For simplicity, assume z ∈ {0, 1, 2, · · · , 9}.
- Suppose q_{\phi}(z) is a (categorical) probability distribution over the hidden variable z parameterized by \(\phi^i = [p_0, p_1, \cdots, p_9]\)

$$q_{\phi^{i}}(\mathsf{z}) = \prod_{k \in \{0,1,2,\cdots,9\}} (\phi^{i}_{k})^{1[\mathsf{z}=k]}$$

- If $\phi^i = [0, 0, 0, 1, 0, \cdots, 0]$, is $q_{\phi^i}(\mathbf{z})$ a good approximation of $p_{\theta}(\mathbf{z}|\mathbf{x}^1)$ (\mathbf{x}^1 is the leftmost datapoint)? Yes
- If $\phi^i = [0, 0, 0, 1, 0, \cdots, 0]$, is $q_{\phi^i}(\mathbf{z})$ a good approximation of $p_{\theta}(\mathbf{z}|\mathbf{x}^3)$ (\mathbf{x}^3 is the rightmost datapoint)? No

Learning latent variable models

Optimize
$$\sum_{\mathbf{x}^i \in \mathcal{D}} \mathcal{L}(\mathbf{x}^i; \theta, \phi^i)$$
 w.r.t. $\theta, \phi^1, \cdots, \phi^M$ using SGD
 $\mathcal{L}(\mathbf{x}^i; \theta, \phi^i) = \sum_{\mathbf{z}} q_{\phi^i}(\mathbf{z}) \log p_{\theta}(\mathbf{z}, \mathbf{x}^i) + H(q_{\phi^i}(\mathbf{z}))$
 $= E_{q_{\phi^i}(\mathbf{z})}[\log p_{\theta}(\mathbf{z}, \mathbf{x}^i) - \log q_{\phi^i}(\mathbf{z})]$

1. Initialize
$$\theta, \phi^1, \cdots, \phi^M$$

- 2. Randomly sample a data point \mathbf{x}^i from \mathcal{D}
- 3. Optimize $\mathcal{L}(\mathbf{x}^i; \theta, \phi^i)$ as a function of ϕ^i :
 - 3.1 Repeat $\phi^i = \phi^i + \eta \nabla_{\phi^i} \mathcal{L}(\mathbf{x}^i; \theta, \phi^i)$
 - 3.2 until convergence to $\phi^{i*} \approx \arg \max_{\phi} \mathcal{L}(\mathbf{x}^i; \theta, \phi)$
- 4. Compute $\nabla_{\theta} \mathcal{L}(\mathbf{x}^{i}; \theta, \phi^{i*})$
- 5. Update θ in the gradient direction. Go to step 2

How to compute gradients in Steps 4,5? Potentially no closed form solution for the expectations. Use Monte Carlo sampling.

Learning latent variable models

$$\begin{aligned} \mathcal{L}(\mathbf{x};\theta,\phi) &= \sum_{\mathbf{z}} q_{\phi}(\mathbf{z}) \log p_{\theta}(\mathbf{z},\mathbf{x}) + H(q_{\phi}(\mathbf{z})) \\ &= E_{q_{\phi}(\mathbf{z})}[\log p_{\theta}(\mathbf{z},\mathbf{x}) - \log q_{\phi}(\mathbf{z})] \end{aligned}$$

- Note: dropped *i* superscript from \mathbf{x}^i, ϕ^i for compactness
- To evaluate the bound, use Monte Carlo. Sample z^k ~ q_φ(z) and estimate:

$$E_{q_{\phi}(\mathbf{z})}[\log p_{\theta}(\mathbf{z}, \mathbf{x}) - \log q_{\phi}(\mathbf{z})] \approx \frac{1}{k} \sum_{k} \log p_{\theta}(\mathbf{z}^{k}, \mathbf{x}) - \log q_{\phi}(\mathbf{z}^{k}))$$

- Key assumption: $q_{\phi}(\mathbf{z})$ is easy to sample from and evaluate
- How to compute gradients $\nabla_{\theta} \mathcal{L}(\mathbf{x}; \theta, \phi)$ and $\nabla_{\phi} \mathcal{L}(\mathbf{x}; \theta, \phi)$?

Learning latent variable models

$$\begin{aligned} \mathcal{L}(\mathbf{x}; \theta, \phi) &= \sum_{\mathbf{z}} q_{\phi}(\mathbf{z}) \log p_{\theta}(\mathbf{z}, \mathbf{x}) + H(q_{\phi}(\mathbf{z})) \\ &= E_{q_{\phi}(\mathbf{z})}[\log p_{\theta}(\mathbf{z}, \mathbf{x}) - \log q_{\phi}(\mathbf{z})] \end{aligned}$$

- Want to compute $\nabla_{\theta} \mathcal{L}(\mathbf{x}; \theta, \phi)$ and $\nabla_{\phi} \mathcal{L}(\mathbf{x}; \theta, \phi)$
- The gradient with respect to θ is easy with Monte Carlo:

$$abla_{ heta} E_{q_{\phi}(\mathbf{z})}[\log p_{ heta}(\mathbf{z}, \mathbf{x}) - \log q_{\phi}(\mathbf{z})] = E_{q_{\phi}(\mathbf{z})}[
abla_{ heta} \log p_{ heta}(\mathbf{z}, \mathbf{x})]$$

$$\approx \frac{1}{k} \sum_{k} \nabla_{ heta} \log p_{ heta}(\mathbf{z}^{k}, \mathbf{x})$$

where $\mathbf{z}^k \sim q_{\phi}(\mathbf{z})$.

- The gradient with respect to ϕ is more complicated because the expectation depends on ϕ
- We still want to estimate with a Monte Carlo average

Reparameterization

- Assume z is now continuous [more general solution called REINFORCE later in course]
- Goal compute gradient w.r.t. ϕ of $E_{q_{\phi}(z)}[r(z)] = \int q_{\phi}(z)r(z)dz$
- Suppose $q_{\phi}(\mathbf{z}) = \mathcal{N}(\mu, \sigma^2 I)$ is Gaussian with parameters $\phi = (\mu, \sigma)$. These are equivalent ways of sampling:
 - Sample $\mathsf{z} \sim q_{\phi}(\mathsf{z})$
 - Sample $\epsilon \sim \mathcal{N}(0, I)$, $\mathbf{z} = \mu + \sigma \epsilon = g_{\phi}(\epsilon)$
- Using this equivalence we compute the expectation in two ways:

$$E_{\mathbf{z} \sim q_{\phi}(\mathbf{z})}[r(\mathbf{z})] = E_{\epsilon \sim \mathcal{N}(0,l)}[r(g_{\phi}(\epsilon))] = \int p(\epsilon)r(\mu + \sigma\epsilon)d\epsilon$$
$$\nabla_{\phi} E_{q_{\phi}(\mathbf{z})}[r(\mathbf{z})] = \nabla_{\phi} E_{\epsilon}[r(g_{\phi}(\epsilon))] = E_{\epsilon}[\nabla_{\phi} r(g_{\phi}(\epsilon))]$$

- Easy to estimate via Monte Carlo if r and g are differentiable w.r.t. ϕ and ϵ is easy to sample from (backpropagation)
- $E_{\epsilon}[\nabla_{\phi}r(g_{\phi}(\epsilon))] \approx \frac{1}{k}\sum_{k} \nabla_{\phi}r(g_{\phi}(\epsilon^{k}))$ where $\epsilon^{1}, \cdots, \epsilon^{k} \sim \mathcal{N}(0, I)$.
- Typically much lower variance than REINFORCE

14/100

Learning Deep Generative models

ŀ

$$\mathcal{L}(\mathbf{x}; \theta, \phi) = \sum_{\mathbf{z}} q_{\phi}(\mathbf{z}) \log p_{\theta}(\mathbf{z}, \mathbf{x}) + H(q_{\phi}(\mathbf{z}))$$
$$= E_{q_{\phi}(\mathbf{z})}[\underbrace{\log p_{\theta}(\mathbf{z}, \mathbf{x}) - \log q_{\phi}(\mathbf{z})}_{r_{\phi}(\mathbf{z})}]$$

- Our case might seem slightly more complicated because we have $E_{q_{\phi}(\mathbf{z})}[r_{\phi}(\mathbf{z})]$ instead of $E_{q_{\phi}(\mathbf{z})}[r(\mathbf{z})]$. Term inside the expectation also depends on ϕ .
- Can still use reparameterization. Assume z = μ + σε = g_φ(ε) like before. Then

$$ar{E}_{q_{\phi}(\mathbf{z})}[r_{\phi}(\mathbf{z})] = E_{\epsilon}[r(g_{\phi}(\epsilon), \phi)]$$

 $pprox rac{1}{k} \sum_{k} r(g(\epsilon^{k}; \phi), \phi)$

$$\max_{\theta} \ell(\theta; \mathcal{D}) \geq \max_{\theta, \phi^1, \cdots, \phi^M} \sum_{\mathbf{x}^i \in \mathcal{D}} \mathcal{L}(\mathbf{x}^i; \theta, \phi^i)$$

- So far we have used a set of variational parameters φⁱ for each data point xⁱ. Does not scale to large datasets.
- Amortization: Now we learn a single parametric function that maps each x to a set of (good) variational parameters. Like doing regression on xⁱ → φ^{i*}
 - For example, instead of learning $q_{\phi^i}(\mathbf{z})$ as Gaussians with different means μ^1, \dots, μ^m and covariances $\Sigma^1, \dots, \Sigma^m$, we can learn a **single** shared neural network $q_{\phi}(\mathbf{z}|\mathbf{x})$ that maps any \mathbf{x}^i to corresponding mean μ^i and covariance Σ^i

Learning with amortized inference

Optimize ∑_{xⁱ∈D} L(xⁱ; θ, φ) w.r.t. θ, φ using (stochastic) gradient descent

$$\begin{split} \mathcal{L}(\mathbf{x};\theta,\phi) &= \sum_{\mathbf{z}} q_{\phi}(\mathbf{z}|\mathbf{x}) \log p_{\theta}(\mathbf{z},\mathbf{x}) + H(q_{\phi}(\mathbf{z}|\mathbf{x})) \\ &= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{z},\mathbf{x}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))] \end{split}$$

- 1. Initialize $\theta^{(0)}, \phi^{(0)}$
- 2. Randomly sample a data point \mathbf{x}^i from \mathcal{D}
- 3. Compute $\nabla_{\theta} \mathcal{L}(\mathbf{x}^{i}; \theta, \phi)$ and $\nabla_{\phi} \mathcal{L}(\mathbf{x}^{i}; \theta, \phi)$
- 4. Update θ,ϕ in the gradient direction
 - How to compute the gradients? Use reparameterization like before

Autoencoder perspective

 $\begin{aligned} \mathcal{L}(\mathbf{x};\theta,\phi) &= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{z},\mathbf{x}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))] \\ &= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{z},\mathbf{x}) - \log p(\mathbf{z}) + \log p(\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}))] \\ &= E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z};\theta)] - D_{\mathcal{K}L}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z})) \end{aligned}$

- 1. Take a data point \mathbf{x}^i
- 2. Map it to $\hat{\mathbf{z}}$ by sampling from $q_{\phi}(\mathbf{z}|\mathbf{x}^{i})$ (encoder)
- 3. Reconstruct $\hat{\mathbf{x}}$ by sampling from $p(\mathbf{x}|\hat{\mathbf{z}};\theta)$ (decoder)

What does the training objective $\mathcal{L}(\mathbf{x}; \theta, \phi)$ do?

- First term encourages $\hat{\mathbf{x}} \approx \mathbf{x}^i$ (\mathbf{x}^i likely under $p(\mathbf{x}|\hat{\mathbf{z}};\theta)$)
- Second term encourages \hat{z} to be likely under the prior p(z)

Learning Deep Generative models

- 1. Alice goes on a space mission and needs to send images to Bob. Given an image \mathbf{x}^i , she (stochastically) compresses it using $\hat{\mathbf{z}} \sim q_{\phi}(\mathbf{z}|\mathbf{x}^i)$ obtaining a message $\hat{\mathbf{z}}$. Alice sends the message $\hat{\mathbf{z}}$ to Bob
- 2. Given $\hat{\mathbf{z}}$, Bob tries to reconstruct the image using $p(\mathbf{x}|\hat{\mathbf{z}};\theta)$
- This scheme works well if $E_{q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z}; \theta)]$ is large
- The term D_{KL}(q_φ(z|x)||p(z)) forces the distribution over messages to have a specific shape p(z). If Bob knows p(z), he can generate realistic messages ² ~ p(z) and the corresponding image, as if he had received them from Alice!

- 1. Combine simple models to get a more flexible one (e.g., mixture of Gaussians)
- 2. Directed model permits ancestral sampling (efficient generation): $\mathbf{z} \sim p(\mathbf{z}), \ \mathbf{x} \sim p(\mathbf{x}|\mathbf{z}; \theta)$
- 3. However, log-likelihood is generally intractable, hence learning is difficult
- 4. Joint learning of a model (θ) and an amortized inference component (ϕ) to achieve tractability via ELBO optimization
- 5. Latent representations for any **x** can be inferred via $q_{\phi}(\mathbf{z}|\mathbf{x})$

Research Directions

Improving variational learning via:

- 1. Better optimization techniques
- 2. More expressive approximating families
- 3. Alternate loss functions