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Plan for today

1. Latent Variable Models

e Learning deep generative models
e Stochastic optimization:

e Reparameterization trick

e Inference Amortization
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Variational Autoencoder

A mixture of an infinite number of Gaussians:

1. z~ N(0,/)
2. po(x|z) =N (o(z), Zg(z)) where 119,%9 are neural networks

3. Even though p(x | z) is simple, the marginal p(x) is very
complex/flexible
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e Latent Variable Models
e Allow us to define complex models p(x) in terms of simple
building blocks p(x | z)
e Natural for unsupervised learning tasks (clustering,
unsupervised representation learning, etc.)
e No free lunch: much more difficult to learn compared to fully
observed, autoregressive models
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Recap: Variational Inference

e Suppose q(z) is any probability distribution over the hidden
variables

Dri(q(2)llpe(zlx)) = — > a(2) log po(2, ) + log ps(x) — H(q) = 0

z

e Evidence lower bound (ELBO) holds for any q

log po(x) > > _ q(2) log py(2, x) + H(q)

e Equality holds if g = py(z|x)

log ps(x)="Y _, 4(2) log ps(z,x) + H(q)

z
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Recap: The Evidence Lower bound

e What if the posterior py(z|x) is intractable to compute?

e Suppose g,(z) is a (tractable) probability distribution over the
hidden variables parameterized by ¢ (variational parameters)

e E.g., a Gaussian with mean and covariance specified by ¢
qs(2) = N(¢1, $2)

e Variational inference: pick ¢ so that g4(z) is as close as possible
to py(z|x). In the figure, the posterior py(z|x) (blue) is better

approximated by N(2,2) (orange) than N(—4,0.75) (green)
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Recap: The Evidence Lower bound

Drr(gs(z[x), po(z]x))

ty

log ps (x)
- ELBO

log-likelihood estimate

¢

log py(x) > Z% ) log py(2,x) + H(qs(2)) = L(x; 0, )
—_——
ELBO
= L(x:0,0) + Dr(qs(2)[ po(z[x))

The better gy4(z) can approximate the posterior py(z|x), the
smaller Dk;(q4(z)||po(z|x)) we can achieve, the closer ELBO will
be to log pp(x). Next: jointly optimize over # and ¢ to maximize
the ELBO over a dataset 77100



Variational learning

marginal likelihood

9 n+1 9 n

L(x;0,¢1) and L(x; 8, p2) are both lower bounds. We want to
jointly optimize 6 and ¢.
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The Evidence Lower bound applied to the entire dataset

e Evidence lower bound (ELBO) holds for any g4 (z)

log py(x) > qus ) log ps(z,x) + H(qs(2)) = L(x; 6, ¢)
ELBO

e Maximum likelihood learning (over the entire dataset):

D)= > logp(x;0) > > L(X:0,¢')

x'eD x'eD
e Therefore
max ((0; D) LD LK 0,6)
3 xi€D

e Note that we use different variational parameters ¢' for every data
point x/, because the true posterior py(z|x) is different across
datapoints x'/
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A variational approximation to the posterior

e Assume py(z,x') is close to pgata(z,x’). Suppose z captures
information such as the digit identity (label), style, etc. For

simplicity, assume z € {0,1,2,---,9}.
e Suppose q,i(z) is a (categorical) probability distribution over the
hidden variable z parameterized by ¢' = [po, p1,- - - , po]
aw@= I (™
ke{0,1,2,--- 9}

e If ' =[0,0,0,1,0,---,0], is q4i(z) a good approximation of
po(z|x') (x! is the leftmost datapoint)? Yes

e If ' =1[0,0,0,1,0,---,0], is q4(z) a good approximation of
po(z|x3) (x3 is the rightmost datapoint)? No



Learning latent variable models

Optimize Y icp L(x; 0, ¢") w.rt. 6,¢, -+, oM using SGD
L(x';0,¢') = Z%: ) log py(z, ") + H(q,i(2))

q¢,<z)[|0g po(z,x") — log q4(2)]

1. Initialize 0, ¢, - -+, M
2. Randomly sample a data point x' from D
3. Optimize L(x'; 6, ¢") as a function of ¢':
3.1 Repeat ¢' = ¢/ + nV 4, L(x';0,0')
3.2 until convergence to ¢ ~ arg max,, L(x'; 0, ¢)
4. Compute VoL(x'; 0, ¢™)
5. Update 6 in the gradient direction. Go to step 2
How to compute gradients in Steps 4,57 Potentially no closed form
solution for the expectations. Use Monte Carlo sampling.
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Learning latent variable models

L(x;0,¢) = Z% ) log py(z, ) + H(qy(2))
= Eq,(z)llog po(z,x) — log q4(2)]

e Note: dropped i superscript from x’, ¢’ for compactness

e To evaluate the bound, use Monte Carlo. Sample zK ~ g4(z)
and estimate:

i) [log py(z, x)—log g4 (z)] = % Z log pg(zk, x)—log q¢(zk))
k

e Key assumption: q4(z) is easy to sample from and evaluate

e How to compute gradients VyL(x; 6, ¢) and V,L(x; 0, $)?
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Learning latent variable models

L(x:0,6) = Z% ) log po(2,x) + H(qs(2))

= %(Z)[IOg Po (27 X) — log q¢(z)]
e Want to compute VyL(x; 6, ¢) and V4L(x; 0, ¢)

e The gradient with respect to 6 is easy with Monte Carlo:

Eqy(2)[Vo log po(z, x)]
[ k
;zk:vﬁ lOgPQ(Z ,X)

VoEq,(z)[log pa(z,x) — log q4(2)]

Q

where z¥ ~ q4(2).

e The gradient with respect to ¢ is more complicated because the
expectation depends on ¢

e We still want to estimate with a Monte Carlo average
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Reparameterization

e Assume z is now continuous [more general solution called
REINFORCE later in course]

e Goal compute gradient w.r.t. ¢ of Eg,;)[r(2)] = [ g4(2)r(z)dz

e Suppose q,(z) = N(,0?1) is Gaussian with parameters ¢ = (u, ).
These are equivalent ways of sampling:
e Sample z ~ q4(2)
e Sample e ~ N(0,/), z= p+ oe = gy(e)

e Using this equivalence we compute the expectation in two ways:
Erg,[r(2)] = Econio,nlr(gs(e))] = /p(e)r(u—f—ae)de
Vo Eqya)[r(2)] = Vo Ec[r(go(e))] = Ec[Vsr(gs(e))]

e Easy to estimate via Monte Carlo if r and g are differentiable w.r.t.
¢ and € is easy to sample from (backpropagation)

o E[Vor(gs(e)] = & Xu Vor(gs(eh)) where e, ek ~ N(0,1).
e Typically much lower variance than REINFORCE 14 /100



Learning Deep Generative models

L(x:0,6) = Z% ) log po(2,x) + H(qs(2))

= qd,(z)[log po(z, x) — log q4(2)]

ry(2)

e Our case might seem slightly more complicated because we have
Eq,(2)[rs(2)] instead of Eg, (;)[r(z)]. Term inside the expectation
also depends on ¢.

e Can still use reparameterization. Assume z = i + oe = gy(e) like
before. Then

Eqd)(Z) [rqb(z)]

Ec[r(gs(€), 9)]
% > r(g(e*: ¢). 0)

k

Q
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Amortized Inference

maxE(H D) > 9¢r111§x¢M Z L(x": 0, ¢
" xieD

e So far we have used a set of variational parameters ¢’ for each
data point x’. Does not scale to large datasets.

e Amortization: Now we learn a single parametric function
that maps each x to a set of (good) variational parameters.
Like doing regression on x' — ¢

e For example, instead of learning q,i(z) as Gaussians with
different means p!,- -, 4™ and covariances ¥1,--- ¥ we
can learn a single shared neural network g4(z|x) that maps
any x' to corresponding mean 4’ and covariance ¥’
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Learning with amortized inference

e Optimize Y icp L£(x'; 0, ¢) w.r.t. 6, ¢ using (stochastic)
gradient descent

L(x:0,0) = Y as(z[x)log pa(z,x) + H(qs(z[x))
= Eq¢(z|x) [lOg pg(Z, X) — log q¢(Z‘X))]

. Initialize 69, (0)

. Randomly sample a data point x’ from D
. Compute VyL(x'; 0, ¢) and V,L(x'; 0, $)
. Update 0, ¢ in the gradient direction

A~ W =

e How to compute the gradients? Use reparameterization like
before
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Autoencoder perspective

L(x;0,0) = Eg,(zxllog ps(z,x) — log ge(z[x))]
= Eg,(zlx[log pa(z,x) — log p(z) + log p(z) — log g4 (z[x))]
= Eg,(zixllog p(x|z; 0)] — Dki(gs(z]x)||p(2))

1. Take a data point x’
2. Map it to 2 by sampling from qy4(z|x’) (encoder)
3. Reconstruct X by sampling from p(x|z; §) (decoder)

What does the training objective £(x; 6, ¢) do?
2;0))

e First term encourages X ~ x' (x' likely under p(x

e Second term encourages 2 to be likely under the prior p(z) 1500



Learning Deep Generative models

1. Alice goes on a space mission and needs to send images to
Bob. Given an image x/, she (stochastically) compresses it
using 2 ~ g4(z|x’) obtaining a message 2. Alice sends the
message Z to Bob

2. Given 2, Bob tries to reconstruct the image using p(x|z; 0)

e This scheme works well if E;, (;1x)[log p(x|z; )] is large

e The term Dk (q4(z|x)||p(z)) forces the distribution over
messages to have a specific shape p(z). If Bob knows p(z), he
can generate realistic messages zZ ~ p(z) and the

corresponding image, as if he had received them from Alice!
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Summary of Latent Variable Models

1. Combine simple models to get a more flexible one (e.g.,
mixture of Gaussians)

2. Directed model permits ancestral sampling (efficient
generation): z ~ p(z), x ~ p(x|z; 6)

3. However, log-likelihood is generally intractable, hence learning
is difficult

4. Joint learning of a model () and an amortized inference
component (¢) to achieve tractability via ELBO optimization

5. Latent representations for any x can be inferred via g4(z|x)
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Research Directions

Improving variational learning via:

1. Better optimization techniques
2. More expressive approximating families

3. Alternate loss functions
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