
CS 261: Deep Generative Models
Homework 1 - Large Language Models

Available: 01/17/2024; Due Date: 23:59 PM PST, 02/04/2024

1 Motivation

In this homework, you will implement an autoregressive model with Transformers, an architecture that powers
all modern Large Language Models (LLMs) like GPT and Llama. For those unfamiliar with this architecture,
we will do a review session during the discussion on 01/19/2024. You will implement the core components of
a Transformers model and several variants of Transformers such as Encoder-only, Decoder-only, and Encoder-
Decoder models. You will then use these as the basis to train a (small) Language Model from scratch on Wik-
ihow articles. The code skeleton is provided at https://colab.research.google.com/drive/1BUtvB3WdKM_
TsMpc8P7CFjHXcm6RygTQ.

2 Logistics

Colab tutorial Students who are not familiar with Google Colab can checkout the tutorial at https://colab.
research.google.com/?utm_source=scs-index.
Code structure We provided a code skeleton for the homework. Students are required to complete the code
within the green comment blocks. See the figure below for an example. We also provided several simple test
functions you can use as a sanity check for your implementation.

Submission After completing the Colab, run the last cell and upload the my_llm_implementation.py file to
GradeScope.
Grading scheme There are 9 unit tests for the implementation of each code block and an additional unit
test for the whole pipeline of training and testing the Encoder-Decoder model. The first 9 unit tests are given
1 point, while the last test is given 2 points.

1

https://colab.research.google.com/drive/1BUtvB3WdKM_TsMpc8P7CFjHXcm6RygTQ
https://colab.research.google.com/drive/1BUtvB3WdKM_TsMpc8P7CFjHXcm6RygTQ
https://colab.research.google.com/?utm_source=scs-index
https://colab.research.google.com/?utm_source=scs-index


3 Useful tips

1) reshape and transpose are not equivalent functions. You’ll need to use both of these functions in a correct
implementation of MHA. See the example below to illustrate how these methods differ.
a = torch.arange (0,3). repeat (4). reshape (1,3,4)
print(" Swapping Last Dimension Using Transpose ")
print(a.transpose (1, 2))
print()
print(" Reshaping Tensor (doesn ’t actually Transpose )")
print(a.reshape(1, 4, 3))

2) The tests require assumptions about where dropout is applied, according to what GPT-2 does in prac-
tice. Since this is a somewhat arbitrary decision in the original GPT-2 implementation, we specify this in the
instructions.

3) The implementation is Multi-Headed attention. If your implementation doesn’t have code to handle the step
illustrated below from the reference linked in the code, you are likely computing single-headed attention instead.

See the hint from the Colab as well

4) Your implementation should not use a for loop over n_heads. There’s a for-loop version that is theoretically
equivalent, but it’s an order of magnitude slower so not used in practice. The instructions specify that you
should compute all heads in parallel and the tests are designed to capture the Floating Point drift introduced
by the for-loop version.

Acknowledgements: We acknowledge Will Held and Danfei Xu for the materials used in creating this home-
work assignment.

2


	Motivation
	Logistics
	Useful tips

