CS 261: Deep Generative Models Quiz 2 Solutions

Available: 01/29/2024; **Due Date:** 23:59 PM PST, 02/02/2024

General Instructions:

- The quiz contains 10 multiple choice questions. You have 1 hour to finish it. Once submitted, you cannot re-take the quiz.
- The syllabus for this quiz are all the content covered last week in the Monday (01/22) and Wednesday (01/24) lectures.
- You are allowed to consult is lecture slides and discussion notes, which you can download in advance and refer to if helpful. No other online or offline resource is permitted.
- The quiz is open till 11:59pm on Friday, Feb 02 2024. There are no late submissions allowed.
- Please follow the UCLA honor code. Any evidence of sharing questions and answers relating to the quiz with other students will lead to an immediate F grade. You are also barred from posting any questions relating to the quizzes on Campuswire until the deadline for submitting the quiz has passed.
- 1. Which of the following statements about Kullback-Leibler (KL) divergence is true?
 - (a) KL divergence is always symmetric
 - (b) KL divergence is only defined for discrete probability distributions
 - (c) $D_{KL}(p,q)$ is undefined when the support of p is strictly greater than the support of q
 - (d) $D_{KL}(p,q)$ is undefined when the support of q is strictly greater than the support of p
 - C. If the support of p is strictly greater than the support of q, then there exists x for which p(x) > 0 and q(x) = 0, which will lead to an undefined expression in the log.
- 2. When does the KL divergence between two distributions become zero?
 - (a) When the two probability distributions are identical
 - (b) When the two probability distributions have disjoint supports
 - (c) When the entropy of the first distribution is zero
 - (d) When the entropy of the second distribution is zero
 - A. By mathematical definition
- 3. The expected log-likelihood of a model p_{θ} under a data distribution p_{data} is equal to the KL divergence between p_{data} and p_{θ} .
 - (a) True
 - (b) False
 - B. $D_{KL}(p,q) = E_{p_{\text{data}}}[\log p_{\text{data}}] E_{p_{\text{data}}}[\log p_{\theta}]$
- 4. Given an input \mathbf{x} , the conditionals in GPT can be evaluated in parallel for density estimation.

- (a) True
- (b) False

A. True, attention can be evaluated in parallel for all queries and hence the conditionals in GPT can be evaluated in parallel for density estimation.

- 5. Given an input \mathbf{x} , the conditionals in RNN can be evaluated in parallel for density estimation.
 - (a) True
 - (b) False
 - B. False, the hidden state for current timestep depends on the hidden state for the previous timestep creating a sequential dependency.
- 6. For generating a new sample x, the conditionals in GPT can be sampled in parallel.
 - (a) True
 - (b) False
 - B. False, sampling a conditional in autoregressive models depend on the previous sampled token creating a sequential dependency.
- 7. For generating a new sample x, the conditionals in RNN can be sampled in parallel.
 - (a) True
 - (b) False
 - B. False, sampling a conditional in autoregressive models depend on the previous sampled token creating a sequential dependency.
- 8. For two arbitrary random vectors \mathbf{x}, \mathbf{z} , there does not exist a joint distribution p such that $p(\mathbf{x}) < p(\mathbf{x}, \mathbf{z})$.
 - (a) True
 - (b) False
 - A. True, $p(\mathbf{x}) = \int_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})$.
- 9. For any arbitrary random vector \mathbf{x} , we have $E_{\mathbf{x} \sim p}[f(\mathbf{x})] = E_{\mathbf{x} \sim q}\left[\frac{f(\mathbf{x})}{q(\mathbf{x})}\right]$.
 - (a) True
 - (b) False
 - B. False, by definition of expectation, $E_{\mathbf{x} \sim p} = E_{\mathbf{x} \sim q} \left[\frac{p(\mathbf{x}) f(\mathbf{x})}{q(\mathbf{x})} \right]$.
- 10. If an autoregressive model assigns high likelihoods to a training set of images, it will also necessarily assign high likelihoods to unseen examples from the same distribution.
 - (a) True
 - (b) False
 - B. False, the model could have overfitted to the training set.