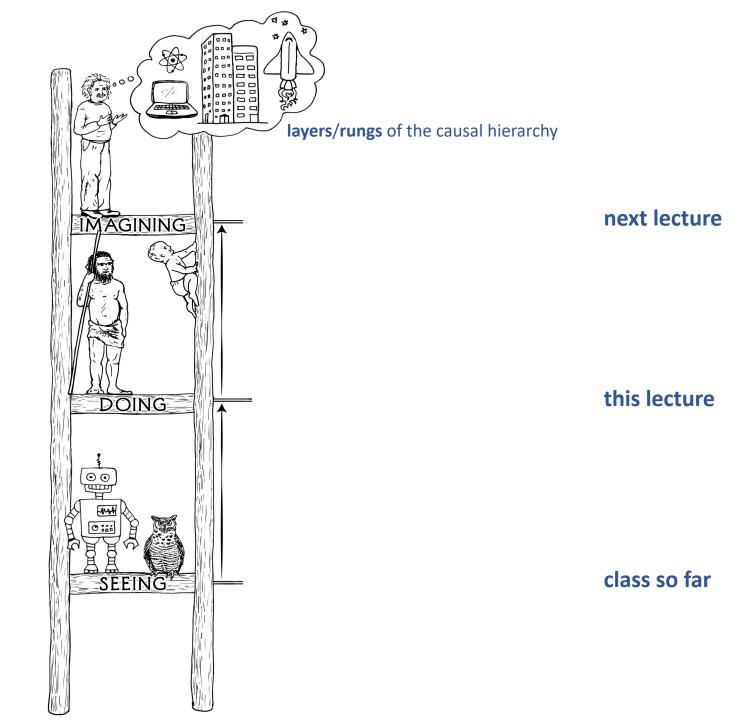
Causality

Part I: Interventions

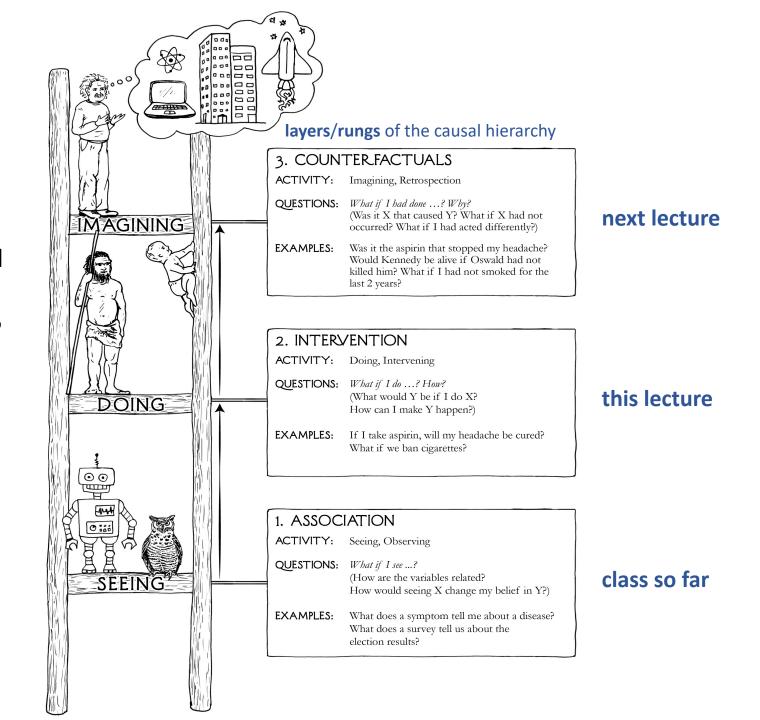
Adnan Darwiche UCLA

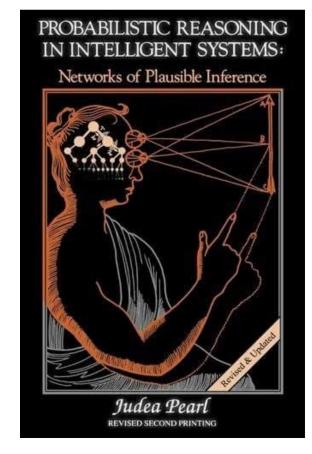
Why Causality?

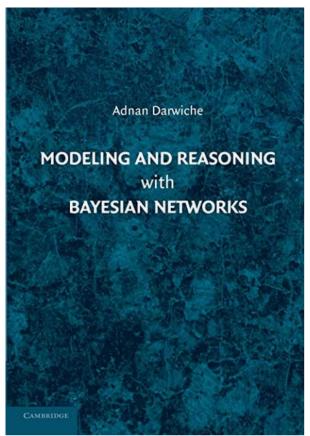


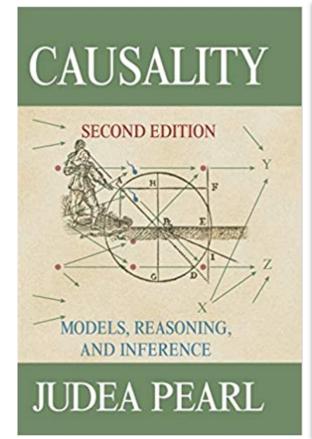
Themes

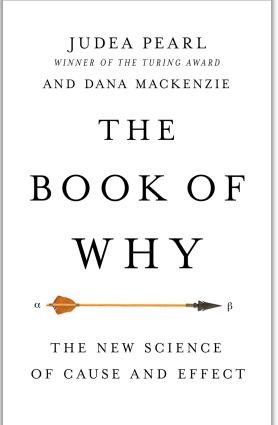
- Why do we need it?
- What additional information do we need so we can do it?
- How can we do it in an idealized setting? (complete model: causal graph + parameters)
- How can we do it in a practical setting? (partial model: causal graph + data)





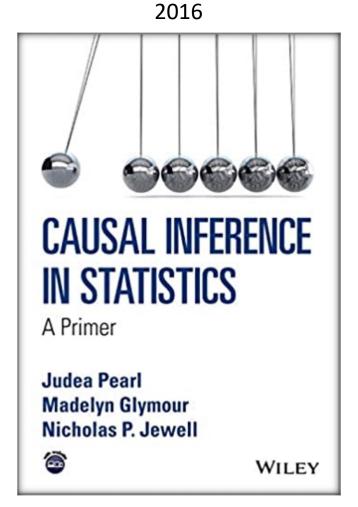






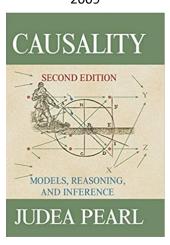
association

intervention & counterfactuals



http://bayes.cs.ucla.edu/PRIMER/

2009

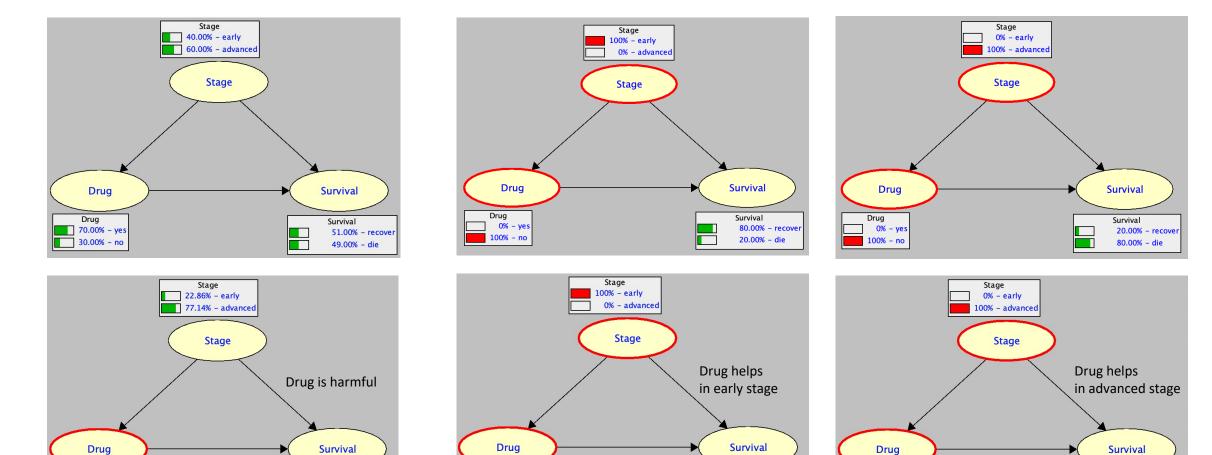


Why Do We Need It? causal effect

Survival

43.71% - recover

56.29% - die



Simpson's Paradox

Drug

100% - yes

http://reasoning.cs.ucla.edu/samiam/

100% - yes

0% - no

Survival

90.00% - recover

10.00% - die

Drug

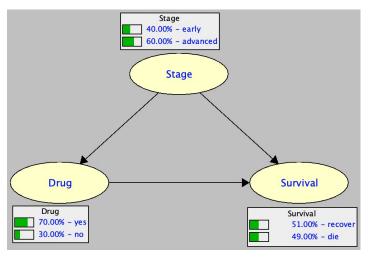
100% - yes

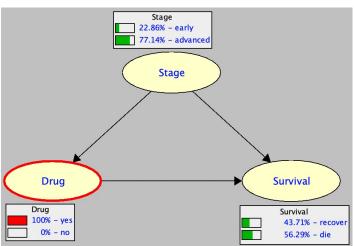
0% - no

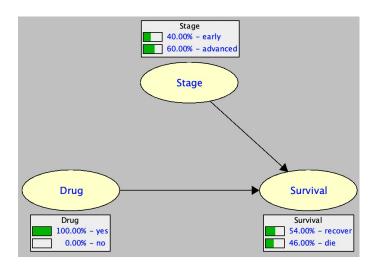
30.00% - recove

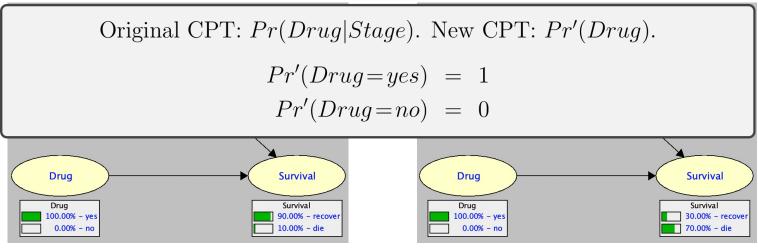
70.00% - die

How Can We Do It? causal effect

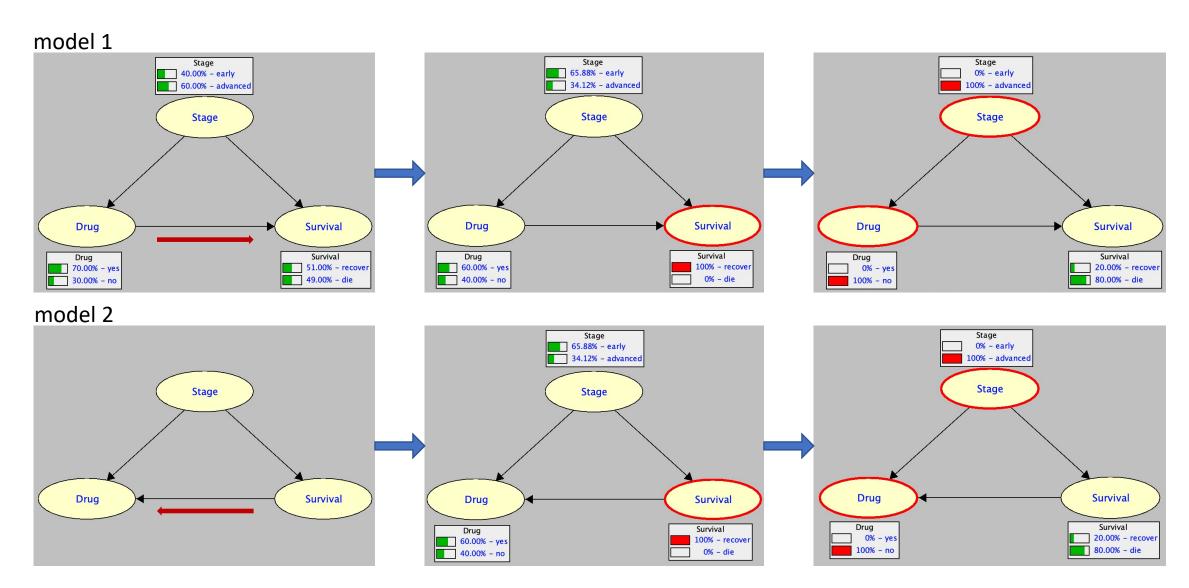




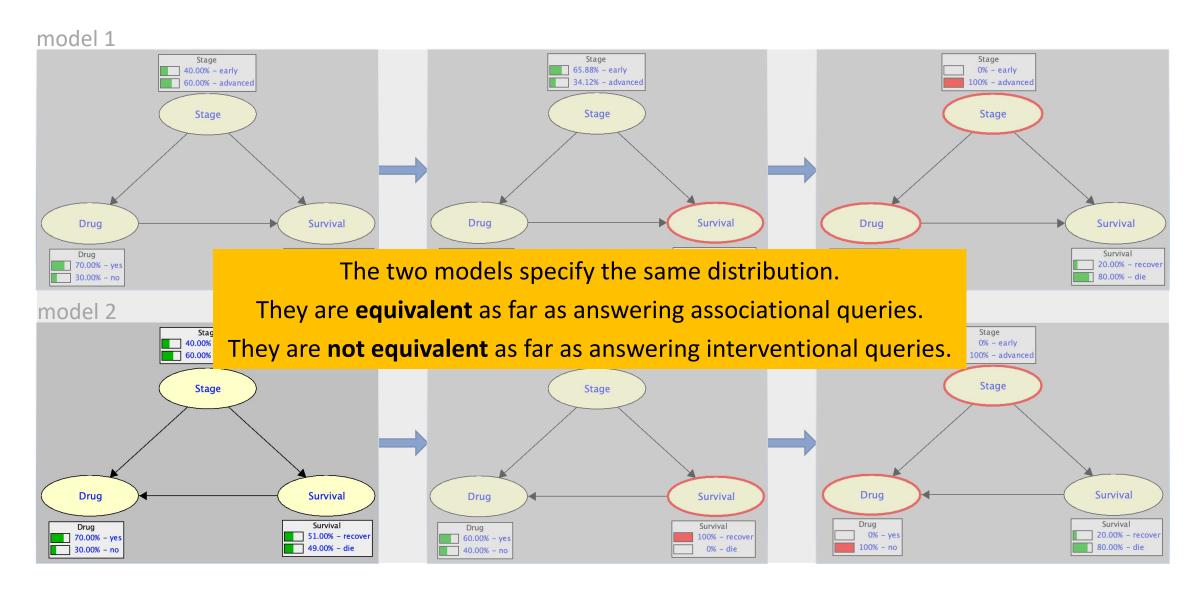




What Additional Information Do We Need?

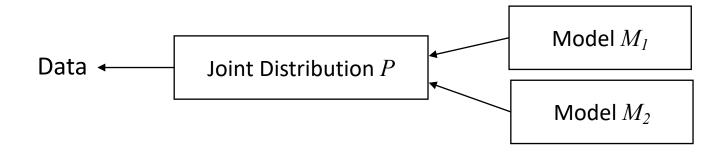


What Additional Information Do We Need?

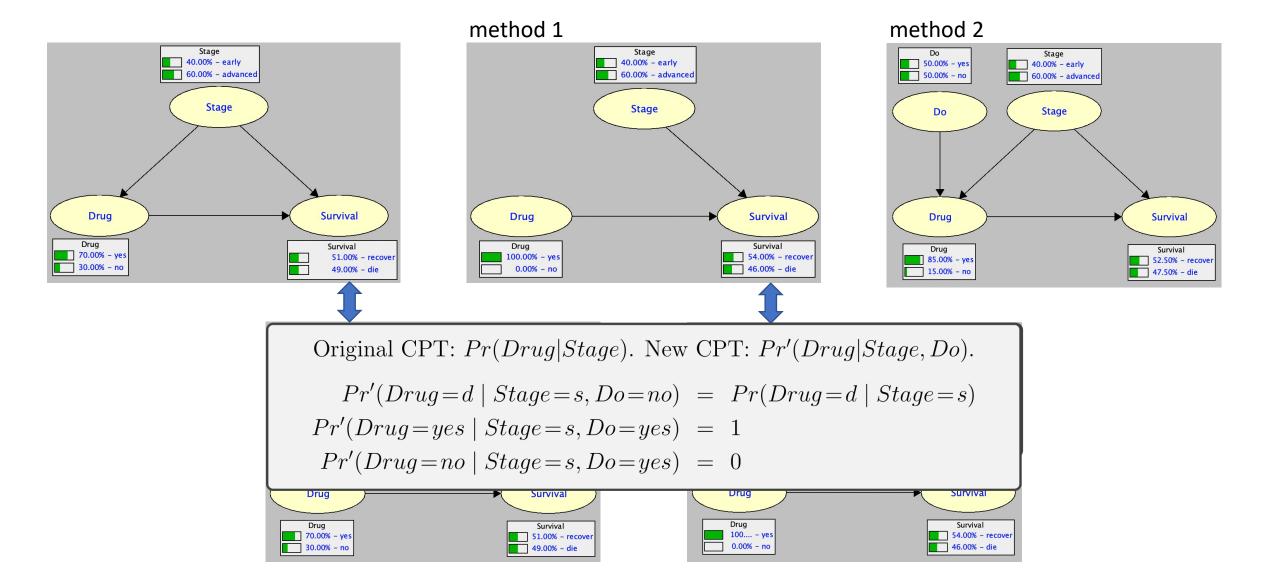


Data Is Not Enough!

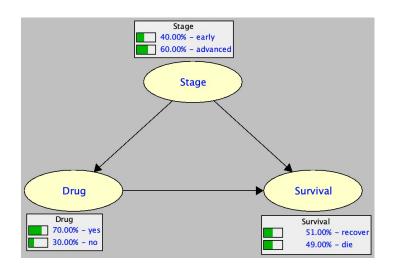
- The previous two models specify the same distribution
- They will generate the same data
- We cannot tell which model generated the data
- Using data only, we cannot answer interventional queries
- We need further information: The causal graph!



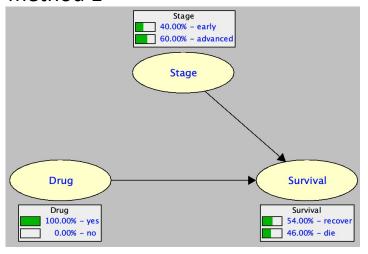
How Else Can We Do It? causal effect



How Else Can We Do It? an algebraic view



method 1



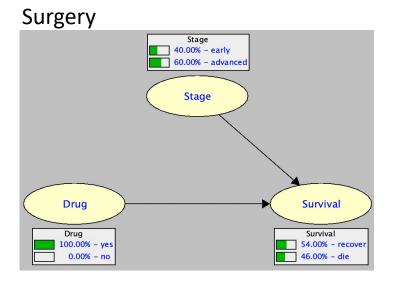
Truncated Formula for Interventional Distribution

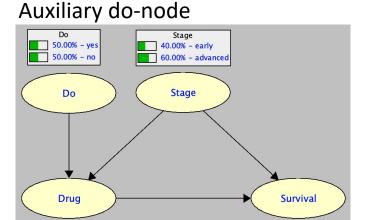
Pr(Survival, Drug, Stage) = Pr(Survival|Drug, Stage)Pr(Drug|Stage)Pr(Stage)

 $Pr_{Drug=yes}(Survival, Stage) = Pr(Survival|Drug=yes, Stage)Pr(Stage)$

How Can We Do It? complete model

- Surgery
- Auxiliary do-node
- Truncated formula





52.50% - recove

47.50% - die

85.00% - yes

15.00% - no

Truncated Formula for Interventional Distribution

Pr(Survival, Drug, Stage) = Pr(Survival|Drug, Stage)Pr(Drug|Stage)Pr(Stage)

 $Pr_{Drug=yes}(Survival, Stage) = Pr(Survival|Drug=yes, Stage)Pr(Stage)$

Notation

Causal Effect (CE) of
$$X = x$$
 on $Y = y$

$$Pr(Y=y|do(X=x))$$

$$Pr(y_x)$$

Distribution

Interventional Distribution for do(X=x)

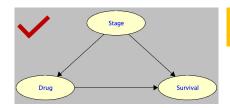
$$Pr_{X=x}(Y,Z)$$

How Else Can We Do It?

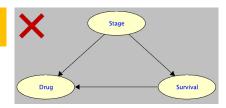
Causal Effect Rule

$$Pr(y|do(x)) = Pr(y_x) =$$

expressing interventional probabilities using associational probabilities



catch: you need to know the parents of X



How Can We Do It? partial model + data

Input:

- Causal graph (no parameters)
- Data (observational)

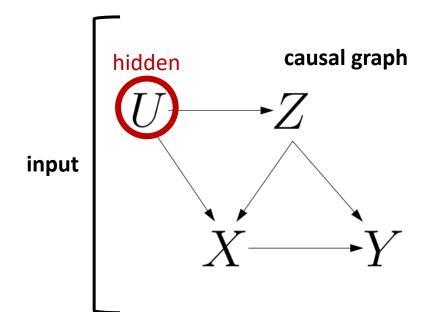
Output:

Causal effect

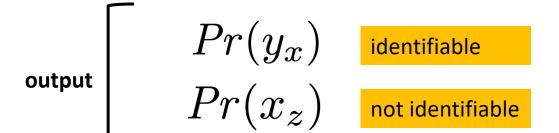
Key observations:

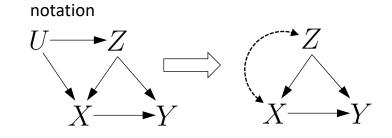
- This may not always be possible
- When it is possible, we say the causal effect is identifiable
- Identifiability depends on type of causal graph and available data
- Several criteria for deciding identifiability: some are complete, some are not

Example Input-Output



Z	% of population
Male	0.116
Female	0.274
Male	0.009
Female	0.101
Male	0.334
Female	0.079
Male	0.051
Female	0.036
	Male Female Male Female Male Female Male Female Male





variables U and U_i usually denote hidden variables

Types of Data

- Observational data
 - Variables are either hidden or fully observed
 - Variables are either hidden, fully observed or partially observed

variable U is hidden

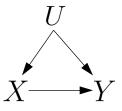
• Interventional data

X	Y	Z	% of population
Yes	Yes	Male	0.116
Z Yes	Yes	Female	0.274
Yes	No	Male	0.009
Yes	No	Female	0.101
→Y No	Yes	Male	0.334
No	Yes	Female	0.079
No	No	Male	0.051
No	No	Female	0.036

Why CE May Not Be Identifiable?

Consider the model

If X and Y are off, cannot tell if X turned off Y or if U turned off both X



$$-Pr(y|x,u) = Pr(\bar{y}|\bar{x},u) = 1$$
 and $Pr(x|u) = q$

$$-Pr(\bar{x}|\bar{u}) = Pr(\bar{y}|X,\bar{u}) = 1$$

$$-Pr(u) = p$$

Causal effect (using truncated formula of interventional distribution)

$$\begin{array}{rcl} Pr(y|do(x)) & = & Pr_x(y) \\ & = & Pr_x(u,y) + Pr_x(\bar{u},y) \\ & = & Pr(u)Pr(y|x,u) + Pr(\bar{u})Pr(y|x,\bar{u}) \\ & = & p(1) + (1-p)(0) = p \end{array}$$

Data generated by the model

$$\begin{array}{c|ccc} U & X & Y & \text{frequency} \\ \hline u & x & y & pq \\ u & \bar{x} & \bar{y} & p(1-q) \\ \bar{u} & \bar{x} & \bar{y} & 1-p \end{array}$$

If *U* is hidden, we see this data

$$egin{array}{c|c} X & Y & {
m frequency} \\ \hline x & y & pq \\ \bar{x} & \bar{y} & 1-pq \\ \hline \end{array}$$

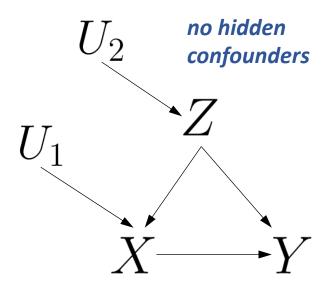
Cannot recover the causal effect...

Example: if pq=.14 then p=.7, q=.2 and p=.2, q=.7 are solutions, but with different causal effects

Types of Causal Graphs hidden variables are roots

Markovian Model

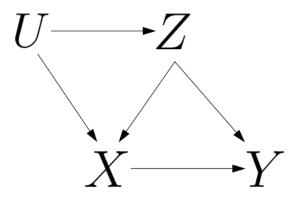
each hidden variable has at most one child



causal effect always identifiable

Semi-Markovian Model

some hidden variable has more than one child



$$Pr(y_x)$$
 identifiable $\ Pr(x_z)$ not identifiable

causal effect **not always** identifiable

Identifiability Criteria identifiability tests

- Causal Effect Rule (incomplete)
- Backdoor Criteria (incomplete)
- Frontdoor Criteria (incomplete)
- Do-Calculus (complete)
- There are other criteria... some use additional information like context-specific independence, or functional dependencies

Causal Effect Rule

Let G be a causal graph which contains variables X and Y and let \mathbf{Z} be the parents of X in G. Then

$$Pr(y|do(x)) = \sum_{\mathbf{z}} Pr(y|x,\mathbf{z})Pr(\mathbf{z})$$

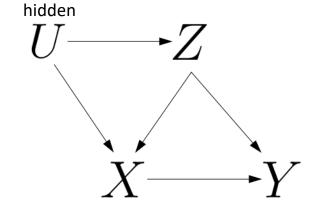
causal effect is identifiable if we have $Pr(X, Y, \mathbf{Z})$

causal effect is identifiable if X, Y, \mathbf{Z} are observed

Example: Causal Effect Rule

Let G be a causal graph which contains variables X and Y and let \mathbf{Z} be the parents of X in G. Then

$$Pr(y|do(x)) = \sum_{\mathbf{z}} Pr(y|x,\mathbf{z})Pr(\mathbf{z})$$



$$Pr(x_z)$$

cannot use CER

not identifiable

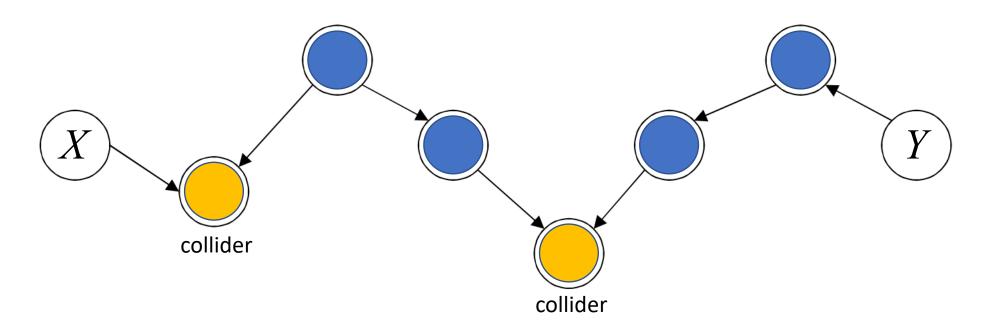
$$Pr(y_x)$$

cannot use CER

identifiable

Backdoor Criteria d-separation review

Is the path blocked by variable Z?



Path between *X* and *Y* is **blocked** by **Z** iff:

- some non-collider is in ${m Z}$, or
- some collider and none of its descendants are not in Z

Backdoor Criteria

Consider a causal graph G and causal effect $Pr(y_x)$.

A set of variables **Z** satisfies the backdoor criteria iff

- (1) no node in \mathbf{Z} is a descendant of X
- (2) \mathbf{Z} blocks every path between X and Y that contains an arrow into X

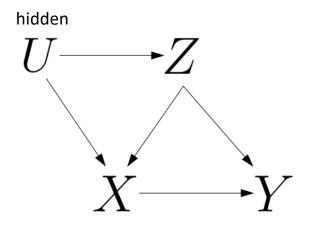
If **Z** is a backdoor, then

$$Pr(y_x) = \sum Pr(y|x, \mathbf{z})Pr(\mathbf{z})$$

interventional

associational

Example: Backdoor



$$Pr(y_x)$$
 cannot use CER identifiable

$$Pr(x_z)$$
 cannot use CER **not identifiable**

$$Pr(y_x)$$
 Z is a backdoor

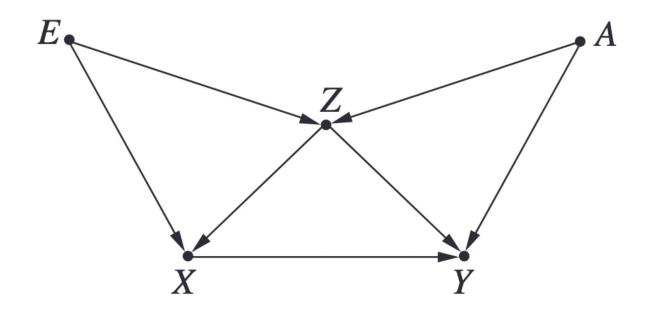
or.

Paths $Y \leftarrow Z \rightarrow X$ and $Y \leftarrow Z \leftarrow U \rightarrow X$ are blocked by Z

 $Pr(x_z)$ — no backdoo

Path $Z \leftarrow U \rightarrow X$ cannot be blocked by observed variables

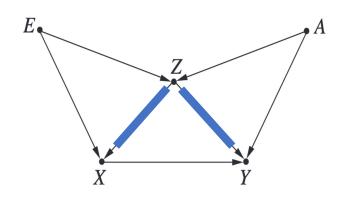
Example: Backdoor

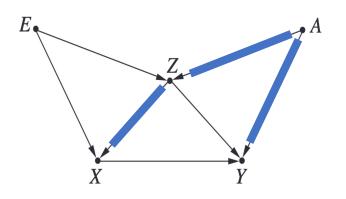


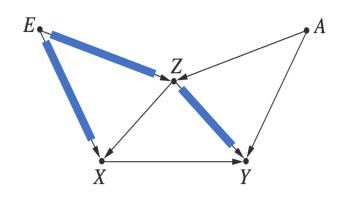
find backdoor for causal effect of X on Y

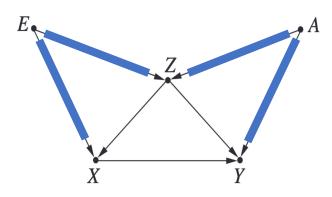
all variables are observed (no hidden variables)

Example: Backdoor









backdoor 1: A, Z

backdoor 2: *E, Z*

backdoor 3: A, E, Z

enumerating backdoor paths

Frontdoor Criteria

Consider a causal graph G and causal effect $Pr(y_x)$. A set of variables **Z** satisfies the frontdoor criteria iff

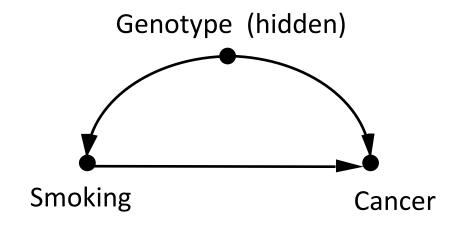
If **Z** is a frontdoor, then

$$Pr(y_x) = \sum_{\mathbf{z}} Pr(\mathbf{z}|x) \sum_{x'} Pr(y|x',\mathbf{z}) Pr(x')$$

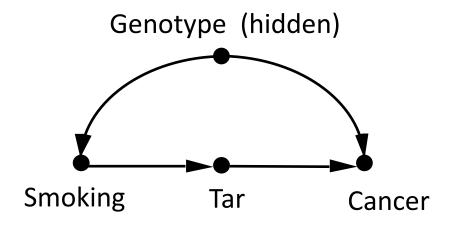
interventional

associational

Incompleteness of Backdoor Criterion



no backdoor causal effect is not identifiable



no backdoor causal effect is identifiable!

causal effect of smoking on cancer Pr(c|do(s))

The Do-Calculus positivity assumption

X, Y, Z, W are disjoint sets of variables

Rule 1: Ignoring observations.

$$Pr(\mathbf{y}|do(\mathbf{x}), \mathbf{z}, \mathbf{w}) = Pr(\mathbf{y}|do(\mathbf{x}), \mathbf{w}) \text{ if } dsep(\mathbf{Y}, \mathbf{XW}, \mathbf{Z})_{G_{\overline{\mathbf{x}}}}$$

Rule 2: Action/observation exchange.

$$Pr(\mathbf{y}|do(\mathbf{x}), do(\mathbf{z}), \mathbf{w}) = Pr(\mathbf{y}|do(\mathbf{x}), \mathbf{z}, \mathbf{w}) \text{ if } dsep(\mathbf{Y}, \mathbf{XW}, \mathbf{Z})_{G_{\overline{\mathbf{x}}\mathbf{z}}}$$

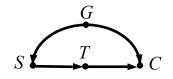
Rule 3: Ignoring actions.

$$Pr(\mathbf{y}|do(\mathbf{x}), do(\mathbf{z}), \mathbf{w}) = Pr(\mathbf{y}|do(\mathbf{x}), \mathbf{w}) \text{ if } dsep(\mathbf{Y}, \mathbf{XW}, \mathbf{Z})_{G_{\overline{\mathbf{X}}\overline{\mathbf{Z}}(\overline{\mathbf{W}})}}$$

 $G_{\overline{\mathbf{X}}}$: graph G after removing edges pointing into variables X

 $G_{\mathbf{X}}$: graph G after removing edges outgoing from variables \mathbf{X}

The Do-Calculus: Example Derivation



Pr(c|do(s)) is identifiable there is a polytime algorithm (ID) for the do-calculus

$$P(c \mid do(s)) = \sum_{t} P(c \mid do(s), t) P(t \mid do(s))$$

$$= \sum_{t} P(c \mid do(s), do(t)) P(t \mid do(s))$$

$$= \sum_{t} P(c \mid do(s), do(t)) P(t \mid s)$$

$$= \sum_{t} P(c \mid do(t) P(t \mid s))$$

$$= \sum_{s'} \sum_{t} P(c \mid do(t), s') P(s' \mid do(t)) P(t \mid s)$$

$$= \sum_{s'} \sum_{t} P(c \mid t, s') P(s' \mid do(t)) P(t \mid s)$$

$$= \sum_{s'} \sum_{t} P(c \mid t, s') P(s') P(t \mid s)$$

Probability Axioms

Rule 2

Rule 2

Rule 3

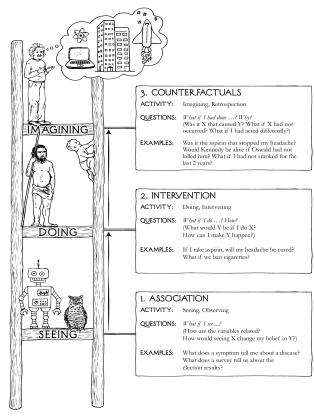
Probability Axioms

Rule 2

Rule 3 (

Concluding Remarks

- Causal hierarchy has three layers
 - 1) Associational reasoning
 - 2) Interventional reasoning
 - 3) Counterfactual reasoning
- A distribution is not enough for layers 2 and 3 (we need a causal graph)
- Data is not enough for layers 2 and 3
- Cross-layer inference is sometimes feasible (e.g., computing interventional probabilities using (partial) data + causal graph)



Thank You!