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Outline

We will discuss in this chapter the process of learning Bayesian
networks from data. The learning process will be studied under
different conditions, which relate to the nature of available data
and the amount of prior knowledge we have on the Bayesian
network.
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Introduction

Cold? Flu? Tonsillitis?

Sore Throat? Fever?Chilling? Body Ache?

Case Cold? Flu? Tonsillitis? Chilling? Bodyache? Sorethroat? Fever?
1 true false ? true false false false
2 false true false true true false true
3 ? ? true false ? true false
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Terminology

data (complete, incomplete); sample; case/observation/unit.
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Introduction

A key objective of this chapter is to provide techniques for:

Estimating the parameters of a network structure given both
complete and incomplete data sets.

Learning the network structure itself, although our focus here
will be on complete data sets for reasons that we state later.

Adnan Darwiche Chapter 17 Learning: The Maximum Likelihood Approach



Introduction

One can distinguish between three general approaches to the
learning problem.

The first approach is based on the likelihood principle

which favors those estimates that have a maximal likelihood, i.e.,
ones that maximize the probability of observing the given data set.
This approach is therefore known as the maximum likelihood
approach to learning.

This is the approach treated in this chapter.
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Introduction

The second approach requires more input to the learning process

as it demands one to define a meta distribution over network
structures and parameters. It then reduces the problem of learning
to a problem of classical inference in which the data set is viewed
as evidence. In particular, it first conditions the meta distribution
on the given data set, and then uses the posterior meta
distribution as a criterion for defining estimates.

This approach is known as the Bayesian approach to learning and
will be treated in Chapter 18.
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Introduction

A third approach for learning Bayesian networks is known as the
constraint-based approach

and applies mostly to learning network structures. According to
this approach, one seeks structures that respect the conditional
independencies exhibited by the given data set.

We do not treat this approach in this book, but provide some
references in the bibliographical remarks section.
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Introduction

Previous approaches induce Bayesian networks that are meaningful
independent of the tasks for which they are intended.

Consider a network which models diseases and symptoms:

Diagnostic tasks: inferring most likely disease given symptoms.

Prediction tasks: inferring most likely symptom given diseases.

If we focus on diagnostics, we can use a more specialized learning principle
that optimizes the diagnostic performance of the learned network.

This leads to a discriminative model: used to discriminate among patients
according to a predefined set of classes (e.g., has cancer or not).

A generative model: evaluated based on its ability to generate the given
data set, regardless of how it performs on any particular task.

We do not cover discriminative approaches to learning in this book.
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Estimating Parameters from Complete Data

Health Aware 

(H)

Smokes 

(S)

Exercises 

(E)

Case H S E
1 T F T
2 T F T
3 F T F
4 F F T
5 T F F
6 T F T
7 F F F
8 T F T
9 T F T
10 F F T
11 T F T
12 T T T
13 T F T
14 T T T
15 T F T
16 T F T

H S E PrD(.)
T T T 2/16
T T F 0/16
T F T 9/16
T F F 1/16
F T T 0/16
F T F 1/16
F F T 2/16
F F F 1/16

(a) network structure (b) complete data (c) empirical distribution
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Estimating Parameters from Complete Data

Assumption

Data simulated from the true Bayesian network: the cases generated
independently according to their true probabilities.

Empirical distribution
summarizes data set.

H S E PrD(.)
T T T 2/16
T T F 0/16
T F T 9/16
T F F 1/16
F T T 0/16
F T F 1/16
F F T 2/16
F F F 1/16

The empirical probability of instantiation h, s, e

is its frequency of occurrence in the data set:

PrD(h, s, e) =
D#(h, s, e)

N
,

where D#(h, s, e) is the number of cases in the data set D that satisfy
instantiation h, s, e, and N is the data set size.
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Estimating Parameters from Complete Data

Estimate parameters based on the empirical distribution

Consider the parameter θs|h for example, which corresponds to the
probability that a person will smoke given that they are health
aware, Pr(s|h). Our estimate for this parameter is now given by:

PrD(s|h) =
PrD(s, h)

PrD(h)
=

2/16

12/16
= 1/6

This corresponds to the simplest estimation technique we discussed
in Chapter 15: the method of direct sampling.
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Estimating Parameters from Complete Data

Basic definitions

A data set D for variables X is a vector d1, . . . ,dN , where each di
is called a case and represents a partial instantiation of variables X.
The data set is complete if each case is a complete instantiation of
variables X; otherwise, the data set is incomplete. The empirical
distribution for a complete data set D is defined as follows:

PrD(α)
def
=

D#(α)

N
,

where D#(α) is the number of cases di in the data set D that
satisfy event α, that is, di |= α.

D#(α) = N when α is a valid event (α satisfied by every case di )
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Estimating Parameters from Complete Data

Case H S E
1 T F T
2 T F T
3 F T F
4 F F T
5 T F F
6 T F T
7 F F F
8 T F T
9 T F T
10 F F T
11 T F T
12 T T T
13 T F T
14 T T T
15 T F T
16 T F T

D#(α) = 9, when α is (H =T ) ∧ (S =F ) ∧ (E =T );

D#(α) = 12, when α is (H =T );

D#(α) = 14, when α is (H =T ) ∨ (E =T ).
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Estimating Parameters from Complete Data

We estimate the parameter θx |u by the empirical probability

θml
x |u

def
= PrD(x |u) =

D#(x ,u)

D#(u)

The count D#(x ,u) is called a sufficient statistic in this case.

More generally though, any function of the data is called a
statistic. Moreover, a sufficient statistic is a statistic that contains
all of the information in the data set that is needed for a particular
estimation task.
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Estimating Parameters from Complete Data

Health Aware 

(H)

Smokes 

(S)

Exercises 

(E)

Case H S E
1 T F T
2 T F T
3 F T F
4 F F T
5 T F F
6 T F T
7 F F F
8 T F T
9 T F T
10 F F T
11 T F T
12 T T T
13 T F T
14 T T T
15 T F T
16 T F T

H S E PrD(.)
T T T 2/16
T T F 0/16
T F T 9/16
T F F 1/16
F T T 0/16
F T F 1/16
F F T 2/16
F F F 1/16

(a) network structure (b) complete data (c) empirical distribution
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Estimating Parameters from Complete Data

Health Aware 

(H)

Smokes 

(S)

Exercises 

(E)

We have the following parameter estimates:

H θml
H

h 3/4
h̄ 1/4

H S θml
S|H

h s 1/6
h s̄ 5/6
h̄ s 1/4
h̄ s̄ 3/4

H E θml
E |H

h e 11/12
h ē 1/12
h̄ e 1/2
h̄ ē 1/2
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Estimating Parameters from Complete Data

Estimate θml
x |u will have different values depending on the

given data set.

The variance of this estimate will decrease as the data set
increases in size.

If data set D is a sample of size N simulated from distribution Pr

The distribution of estimate θml
x |u is asymptotically Normal and can

be approximated by a Normal distribution with mean Pr(x |u) and
variance:

Pr(x |u)(1− Pr(x |u))

N · Pr(u)
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Estimating Parameters from Complete Data

If data set D is a sample of size N simulated from distribution Pr

The distribution of estimate θml
x |u is asymptotically Normal and can

be approximated by a Normal distribution with mean Pr(x |u) and
variance:

Pr(x |u)(1− Pr(x |u))

N · Pr(u)

If probability Pr(u) is too small, and the data set is not large
enough, it is not uncommon for the empirical probability PrD(u) to
be zero. Under these conditions, the estimate PrD(x |u) is not well
defined, leading to what is known as the problem of zero counts.
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Estimating Parameters from Complete Data

Likelihood of parameter estimates

Let θ be the set of all parameter estimates for network structure
G , and let Prθ(.) be the probability distribution induced by
structure G and estimates θ. The likelihood of these estimates is:

L(θ|D)
def
=

N∏

i=1

Prθ(di )

Likelihood of estimates θ is the probability of observing the data
set D under these estimates.
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Estimating Parameters from Complete Data

Let D be a complete data set

The parameter estimates defined earlier are the only estimates that
maximize the likelihood function:a

θ? = argmax
θ

L(θ|D) iff θ?x |u = PrD(x |u)

aAssumes PrD(u) > 0 for every instantiation u of every parent set U

It is for this reason that these estimates are called maximum
likelihood (ML) estimates and are denoted by θml :

θml = argmax
θ

L(θ|D)
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Estimating Parameters from Complete Data

We defined these estimates based on the empirical distribution and
then showed that they maximize the likelihood function.

Yet, it is quite common to start with the goal of maximizing the
likelihood function and then derive these estimates accordingly.

This alternative approach is justified by some strong, desirable,
properties that are satisfied by estimates that maximize the
likelihood function.

We will indeed follow this approach when dealing with incomplete
data in the next section.
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Estimating Parameters from Complete Data

Another property of our ML estimates is that they minimize the
KL–divergence between the learned Bayesian network and the
empirical distribution.

Let D be a complete data set over variables X

argmax
θ

L(θ|D) = argmin
θ

KL(PrD(X),Prθ(X))
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Estimating Parameters from Complete Data

Since ML estimates are unique for a given structure G and
complete data set D

the likelihood of these parameters is then a function of the
structure G and data set D

We will therefore define the likelihood of structure G given data
set D as follows:

L(G |D)
def
= L(θml |D),

where θml are the ML estimates for structure G and data set D
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Estimating Parameters from Complete Data

More convenient to work with the logarithm of likelihood

LL(θ|D)
def
= logL(θ|D) =

N∑

i=1

logPrθ(di )

The log-likelihood of structure G is defined similarly:

LL(G |D)
def
= logL(G |D)

Likelihood is ≥ 0 while log-likelihood is ≤ 0

Maximizing likelihood is equivalent to maximizing log-likelihood.

We will use log2 but write log.
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Estimating Parameters from Complete Data

Log-likelihood decomposes into family-based components

Let G be a network structure and D be a complete data set of size
N. If XU ranges over the families of structure G , then

LL(G |D) = −N
∑

XU

ENTD(X |U),

where ENTD(X |U) is the conditional entropy defined as follows:

ENTD(X |U) = −
∑

xu

PrD(xu) log2 PrD(x |u)

Decomposition is critical when learning network structure.
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Estimating Parameters from Incomplete Data

The parameter estimates we considered are unique, asymptotically
Normal, and maximize the probability of data. These estimates are
easily computable by performing a single pass on the data set.

We have proven some of these properties independently, yet some
of them follow from the others under more general conditions.

For example, maximum likelihood estimates are known to be
asymptotically Normal for a large class of models that include but
is not limited to Bayesian networks.

It is therefore common to seek maximum likelihood estimates for
incomplete data sets. The properties of these estimates, however,
will depend on the nature of incompleteness we have.
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Estimating Parameters from Incomplete Data

Consider a network structure C → T , where C represents a
medical condition and T represents a test for detecting this
condition:

C θc
yes .25
no .75

C T θt|c
yes +ve .80
yes −ve .20
no +ve .40
no −ve .60

Note: Pr(T =+ve) = Pr(T =−ve) = 1/2
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Estimating Parameters from Incomplete Data

Consider now the following data sets, all of which are incomplete:

D1 C T

1 ? +ve
2 ? +ve
3 ? −ve
4 ? −ve
5 ? −ve
6 ? +ve
7 ? +ve
8 ? −ve

D2 C T

1 yes +ve
2 yes +ve
3 yes −ve
4 no ?
5 yes −ve
6 yes +ve
7 no ?
8 no −ve

D3 C T

1 yes +ve
2 yes +ve
3 ? −ve
4 no ?
5 yes −ve
6 ? +ve
7 no ?
8 no −ve
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Estimating Parameters from Incomplete Data

D1 C T

1 ? +ve
2 ? +ve
3 ? −ve
4 ? −ve
5 ? −ve
6 ? +ve
7 ? +ve
8 ? −ve

Values of variable C are
missing in all cases of the first
data set, perhaps because we
can never determine this
condition directly. We will say
in this situation that variable C
is hidden or latent.
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Estimating Parameters from Incomplete Data

D2 C T

1 yes +ve
2 yes +ve
3 yes −ve
4 no ?
5 yes −ve
6 yes +ve
7 no ?
8 no −ve

Variable C is always observed,
while variable T has some
missing values, but is not
hidden.
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Estimating Parameters from Incomplete Data

D3 C T

1 yes +ve
2 yes +ve
3 ? −ve
4 no ?
5 yes −ve
6 ? +ve
7 no ?
8 no −ve

Both variables have some
missing values, but neither is
hidden.
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Estimating Parameters from Incomplete Data

D1 C T
1 ? +ve
2 ? +ve
3 ? −ve
4 ? −ve
5 ? −ve
6 ? +ve
7 ? +ve
8 ? −ve

Cases are split equally between
the +ve and −ve values of T .
We expect this to be true in
the limit, given the distribution
generating this data.

ML estimates are characterized by

θT=+ve|C=yes · θC=yes + θT=+ve|C=no · θC=no =
1

2
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Estimating Parameters from Incomplete Data

ML estimates are characterized by

θT=+ve|C=yes · θC=yes + θT=+ve|C=no · θC=no =
1

2

The true parameter values satisfy the above equation. But the
following estimates do as well:

θC=yes = 1, θT=+ve|C=yes = 1/2,

with θT=+ve|C=no taking any value.

ML estimates are not unique.
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Estimating Parameters from Incomplete Data

D2 C T
1 yes +ve
2 yes +ve
3 yes −ve
4 no ?
5 yes −ve
6 yes +ve
7 no ?
8 no −ve

Consider the following two scenarios:

1 People who do not suffer from the condition tend not to
take the test. That is, the data is missing because the test
is not performed to start with.

2 People who test negative tend not to report the result.
That is, the test is performed, but its value is not recorded.

In the second scenario, the fact that a value is missing does provide some evidence that this value must be negative.

The ML approach will give the intended results when applied under the first scenario, but will give unintended
results under the second scenario as it does not integrate all of the information we have about this scenario.

The ML approach can still be applied under the second scenario, but that requires some explication of the
mechanism that causes the data to be missing.
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Estimating Parameters from Incomplete Data

We will next present two methods that search for ML estimates
under incomplete data.

Both methods are based on local search, which start with some
initial estimates, and then iteratively improve on them until some
stopping condition is met.

Both methods are generally more expensive than the method for
complete data, yet neither is generally guaranteed to find ML
estimates.
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Expectation Maximization

Our first local search method, called Expectation Maximization
(EM), is based on the method of complete data we discussed
earlier.

This method will first complete the data set, inducing an empirical
distribution, and then use it to estimate parameters as we did
earlier.

The new set of parameters are guaranteed to have no less
likelihood than the initial parameters, so this process can be
repeated until some convergence condition is met.
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Expectation Maximization

A

B C

D

D A B C D

d1 ? b1 c2 ?
d2 ? b1 ? d2

d3 ? b2 c1 d1

d4 ? b2 c1 d1

d5 ? b1 ? d2

Our goal is to find ML estimates for the given data set.
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Expectation Maximization

A

B C

D

A θ0
a

a1 .20
a2 .80

A B θ0
b|a

a1 b1 .75
a1 b2 .25
a2 b1 .10
a2 b2 .90

A C θ0
c|a

a1 c1 .50
a1 c2 .50
a2 c1 .25
a2 c2 .75

B D θ0
d|b

b1 d1 .20
b1 d2 .80
b2 d1 .70
b2 d2 .30

A Bayesian network inducing a probability distribution Prθ0(.)
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Expectation Maximization

The initial estimates θ0 have the following likelihood:

L(θ0|D) =
5Y

i=1

Prθ0 (di )

= Prθ0 (b1, c2)Prθ0 (b1, d2)Prθ0 (b2, c1, d1)Prθ0 (b2, c1, d1)Prθ0 (b1, d2)

= (.135)(.184)(.144)(.144)(.184)

= 9.5× 10−5

Evaluating the terms in the above product would generally require
inference on the Bayesian network.
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Expectation Maximization

To illustrate the process of completing a data set, consider again
the data set:

D A B C D

d1 ? b1 c2 ?
d2 ? b1 ? d2

d3 ? b2 c1 d1

d4 ? b2 c1 d1

d5 ? b1 ? d2

The first case in this data set has two variables with missing
values, A and D. Hence, there are four possible completions for
this case. Although we do not know which one of these
completions is the correct one, we can compute the probability of
each completion based on the initial set of parameters we have.
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Expectation Maximization

D A B C D Pr
θ0 (Ci |di )

d1 ? b1 c2 ?
a1 b1 c2 d1 .111 = Pr

θ0 (a1, d1|b1, c2)

a1 b1 c2 d2 .444
a2 b1 c2 d1 .089
a2 b1 c2 d2 .356

d2 ? b1 ? d2
a1 b1 c1 d2 .326 = Pr

θ0 (a1, c1|b1, d2)

a1 b1 c2 d2 .326
a2 b1 c1 d2 .087
a2 b1 c2 d2 .261

d3 ? b2 c1 d1
a1 b2 c1 d1 .122 = Pr

θ0 (a1|b2, c1, d1)

a2 b2 c1 d1 .878
d4 ? b2 c1 d1

a1 b2 c1 d1 .122 = Pr
θ0 (a1|b2, c1, d1)

a2 b2 c1 d1 .878
d5 ? b1 ? d2

a1 b1 c1 d2 .326 = Pr
θ0 (a1, c1|b1, d2)

a1 b1 c2 d2 .326
a2 b1 c1 d2 .087
a2 b1 c2 d2 .261

A B C D Pr
D,θ0 (.)

a1 b1 c1 d1 0
a1 b1 c1 d2 .130
a1 b1 c2 d1 .022
a1 b1 c2 d2 .219
a1 b2 c1 d1 .049
a1 b2 c1 d2 0
a1 b2 c2 d1 0
a1 b2 c2 d2 0
a2 b1 c1 d1 0
a2 b1 c1 d2 .035
a2 b1 c2 d1 .018
a2 b1 c2 d2 .176
a2 b2 c1 d1 .351
a2 b2 c1 d2 0
a2 b2 c2 d1 0
a2 b2 c2 d2 0

(a) completed data set, with expected values (b) expected empirical
of completed cases distribution
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Expectation Maximization

There are three occurrences of the instantiation a1, b1, c2, d2 in the
completed data set, which result from completing the cases d1,d2

and d5.

The probability of seeing these completions is given by:

PrD,θ0 (a1, b1, c2, d2) =
Prθ0 (a1, d2|d1) + Prθ0 (a1, c2|d2) + Prθ0 (a1, c2|d5)

N

=
.444 + .326 + .326

5
= .219

Note here that we are using PrD,θ0(.) to denote the expected
empirical distribution based on parameters θ0
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Expectation Maximization

The expected empirical distribution of data set D under
parameters θk is defined as follows

PrD,θk (α)
def
=

1

N

∑

di ,ci |=α
Prθk (ci |di ),

where α is an event and Ci are the variables with missing values in
case di .

Recall that di , ci |= α means that event α is satisfied by complete
case di , ci . Hence, we are summing Prθk (ci |di ) for all cases di and
their completions ci that satisfy event α.
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Expectation Maximization

When the data set is complete, PrD,θk (.) reduces to the empirical

distribution PrD(.) which is independent of parameters θk .

Moreover, N · PrD,θk (x) is called the expected count of
instantiation x in data set D, just as N · PrD(x) represents the
count of instantiation x in a complete data set D.
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Expectation Maximization

We can now use this expected empirical distribution to estimate
parameters, just as we did for complete data.

For example, we have the following estimate for parameter θc1|a2
:

θ1
c1|a2

= PrD,θ0(c1|a2) =
PrD,θ0(c1, a2)

PrD,θ0(a2)
= .666
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Expectation Maximization

A

B C

D

A θ1
a

a1 .420
a2 .580

A B θ1
b|a

a1 b1 .883
a1 b2 .117
a2 b1 .395
a2 b2 .605

A C θ1
c|a

a1 c1 .426
a1 c2 .574
a2 c1 .666
a2 c2 .334

B D θ1
d|b

b1 d1 .067
b1 d2 .933
b2 d1 1.00
b2 d2 0.00

A Bayesian network inducing a probability distribution Prθ1(.)
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Expectation Maximization

The new estimates θ1 have likelihood:

L(θ1|D) =
5∏

i=1

Prθ1(di )

= (.290)(.560)(.255)(.255)(.560)

= 5.9× 10−3

> L(θ0|D)

The new estimates have a higher likelihood than the initial ones we
started with. This holds more generally as we will now show.
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Expectation Maximization

The EM estimates for data set D and parameters θk

θk+1
x |u

def
= PrD,θk (x |u)

EM estimates are based on the expected empirical distribution, just
as our estimates for complete data were based on the empirical
distribution. We now have the following key result.
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Expectation Maximization

EM estimates satisfy the following property

LL(θk+1|D) ≥ LL(θk |D)

This is a corollary of Theorems to be discussed later, which
characterize the EM algorithm and also explain its name
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Expectation Maximization

EM estimates can be computed without constructing the expected
empirical distribution.

The expected empirical distribution of data set D given
parameters θk can be computed as follows

PrD,θk (α) =
1

N

N∑

i=1

Prθk (α|di )

That is, we simply iterate over the data set cases, while computing
the probability of α given each case (i.e., no need to explicitly
consider the completion of each case).

Adnan Darwiche Chapter 17 Learning: The Maximum Likelihood Approach



Expectation Maximization

The EM estimates for data set D and parameters θk can now be
computed as follows:

θk+1
x |u =

∑N
i=1 Prθk (xu|di )∑N
i=1 Prθk (u|di )

Does not reference the expected empirical distribution.

Equation computes EM estimates by performing inference on a
Bayesian network parameterized by the previous parameter
estimates θk

For example,

θ1
c1|a2

=

∑5
i=1 Prθ0 (c1, a2|di )∑5
i=1 Prθ0 (a2|di )

=
0 + .087 + .878 + .878 + .087

.444 + .348 + .878 + .878 + .348
= .666
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Expectation Maximization

ML EM(G , θ0, D)
input:

G : Bayesian network structure with families XU

θ0: parametrization of structure G
D: data set of size N

output: ML/EM parameter estimates for structure G .

main:

1: k←0
2: while θk 6= θk−1 do {this test is different in practice}
3: cxu←0 for each family instantiation xu

4: for i = 1 to N do
5: for each family instantiation xu do

6: cxu←cxu + Pr
θk

(xu|di ) {requires inference on network (G , θk )}
7: end for
8: end for
9: compute parameter estimates θk+1 using θk+1

x|u = cxu/
P

x? cx?u

10: k←k + 1
11: end while
12: return θk
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Expectation Maximization

EM may converge to different parameters, with different
likelihoods, depending on the initial estimates θ0 that it starts with.

Each iteration of the EM algorithm will have to perform inference
on a Bayesian network.

In each iteration, the algorithm computes the probability of each
instantiation xu given each case di as evidence.

All of these computations correspond to posterior marginals over
network families.
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Expectation Maximization

Recall the log-likelihood function:

LL(θ|D) =
N∑

i=1

logPrθ(di )

We have seen earlier how one can maximize this function for a
complete data set by choosing parameter estimates based on the
empirical distribution:

θx |u = PrD(x |u)
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Expectation Maximization

Consider now the following new function of parameters, called the
expected log-likelihood, which computes the log-likelihood of
parameters but with respect to a completed data set:

ELL(θ|D, θk)
def
=

N∑

i=1

∑

ci

[
logPrθ(ci ,di )

]
Prθk (ci |di )

As before, Ci are the variables with missing values in case di .

Recall again the EM estimates based on the expected empirical
distribution:

θk+1
x |u = PrD,θk (x |u)
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Expectation Maximization

Following result draws a parallel between the two cases of
log-likelihood and expected log-likelihood.

EM parameter estimates are the only estimates that maximize the
expected log-likelihood function

θk+1 = argmax
θ

ELL(θ|D, θk) iff θk+1
x |u = PrD,θk (x |u)

Hence, EM is indeed searching for estimates that maximize the
expected log-likelihood function, which also explains its name.
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Expectation Maximization

Parameters that maximize the expected log-likelihood function
cannot decrease the log-likelihood function

If θk+1 = argmax
θ

ELL(θ|D, θk), then LL(θk+1|D) ≥ LL(θk |D)
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Expectation Maximization

EM is capable of converging to every local maxima of the
log-likelihood function

The fixed points of EM are precisely the stationary points of the
log-likelihood function.

The EM algorithm is known to converge very slowly if the fraction
of missing data is quite large.
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Gradient Ascent

Another approach for maximizing the log-likelihood function is to view the problem as one of optimizing a
continuous nonlinear function.

This is a widely studied problem, where most of the solutions are based on local search, which starts by assuming
some initial value θ0

x|u for each parameter θx|u, and then move through the parameter space in steps of the form

θk+1
x|u = θkx|u + δkx|u

Different algorithms will use different values for the increment δkx|u, yet most of them will use gradient information

for determining this increment.

Recall that for a function f (v1, . . . , vn), the gradient is the vector of partial derivatives ∂f /∂v1, . . . , ∂f /∂vn

When evaluated at a particular point (v1, . . . , vn), the gradient gives the direction of the greatest increase in the
value of f

Hence, a direct use of the gradient, called gradient ascent, suggests that we move in the direction of the gradient
by incrementing each variable vi with η ∂f

∂vi
(v1, . . . , vn), where η is a constant known as the learning rate.
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The Missing-Data Mechanism

Variable I indicates whether the test result is missing in the data.

Missing 

Test (I)
Test (T)

Condition

(C)

The missing data depends on
the condition (e.g., people who
do not suffer from the
condition tend not to take the
test).
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The Missing-Data Mechanism

Variable I indicates whether the test result is missing in the data.

Missing 

Test (I)

Test (T)

Condition

(C)
The missing of data depends
on the test result (e.g.,
individuals who test negative
tend not to report the result).

The two structures explicate different missing-data mechanisms.
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The Missing-Data Mechanism

Our goal is to discuss ML estimates that one would obtain with
respect to structures that explicate missing-data mechanisms, and
to compare these estimates with the ones obtained when ignoring
such mechanisms (e.g., using the simpler structure C → T as we
did earlier).
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The Missing-Data Mechanism

Let G be a network structure, D be a corresponding data set, and
let M be the variables of G that have missing values in the data
set. Let I be a set of variables, called missing-data indicators, that
are in one-to-one correspondence with variables M. A network
structure that results from adding variables I as leaf nodes to G is
said to explicate the missing-data mechanism, and will be denoted
by GI
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The Missing-Data Mechanism

We will generally use DI to denote an extension of the data set D,
which includes missing-data indicators.

D C T
1 yes +ve
2 yes +ve
3 yes −ve
4 no ?
5 yes −ve
6 yes +ve
7 no ?
8 no −ve

DI C T I
1 yes +ve no
2 yes +ve no
3 yes −ve no
4 no ? yes
5 yes −ve no
6 yes +ve no
7 no ? yes
8 no −ve no
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The Missing-Data Mechanism

Now that we have two different missing-data mechanisms, we can
apply the ML approach in three different ways:

1 To the original structure C → T and the data set D

2 To the first extended structure GI and the data set DI

3 To the second extended structure GI and the data set DI

All three approaches will yield estimates for variables C and T as
they are shared among all three structures.

The question we now face is whether ignoring the missing-data
mechanism will change the ML estimates for these variables.
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The Missing-Data Mechanism

Missing 

Test (I)
Test (T)

Condition

(C)

Missing 

Test (I)

Test (T)

Condition

(C)

ignorable mechanism non-ignorable mechanism

As it turns out, the first and second approaches will indeed yield
identical estimates, which are different from the ones obtained by
the third approach.
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The Missing-Data Mechanism

Let GI be a network structure that explicates the missing-data
mechanism of structure G and data set D

Let O be variables that are always observed in the data set D, and
M be the variables that have missing values in the data set. We
will say that GI satisfies the missing at random (MAR) assumption
if I and M are d-separated by O in structure GI

Intuitively, GI satisfies the MAR assumption if once we know the
values of variables O, the specific values of variables M become
irrelevant to whether these values will be missing in the data set.
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The Missing-Data Mechanism

Missing 

Test (I)
Test (T)

Condition

(C)

Missing 

Test (I)

Test (T)

Condition

(C)

ignorable mechanism non-ignorable mechanism

satisfies MAR does not
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The Missing-Data Mechanism

If the MAR assumption holds, the missing-data mechanism can be
ignored

Let GI and DI be a structure and a data set that explicate the
missing-data mechanism of G and D. Let θ be the parameters of
structure G , and θI be the parameters of indicator variables I in
structure GI. If GI satisfies the MAR assumption, then:

argmax
θ

LL(θ|D) = argmax
θ

max
θI

LL(θ, θI|DI)

Hence, under the MAR assumption, we obtain the same ML
estimates θ whether we include or ignore the missing-data
mechanism.
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The Missing-Data Mechanism

Consider a data set with a single case:

C =no, T =?

If we ignore the missing-data mechanism, i.e., compute ML
estimates with respect to structure C → T , we get the following:

No one has the condition C : θC=no is 1

Nothing is learned about the reliability of test T (its
parameters are unconstrained)
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The Missing-Data Mechanism

If we now compute ML estimates with respect to the single case:

C =no, T =?, I =yes,

and the second missing-data mechanism, we also get θC=no is 1

But we also get the following additional constraint.

If the missing-data mechanism is not trivial—that is, if it is not the
case that θI=yes|T=−ve = θI=yes|T=+ve = 1—then either:

1 The test has a true negative rate of 100% and negative test results
are always missing. That is, θT=−ve|C=no = 1 and θI=yes|T=−ve = 1

2 The test has a false positive rate of 100% and positive test results
are always missing. That is, θT=+ve|C=no = 1 and θI=yes|T=+ve = 1

Adnan Darwiche Chapter 17 Learning: The Maximum Likelihood Approach



Learning Network Structure

Our main approach for estimating network parameters has been to search
for ML estimates, that is, ones that maximize the probability of observing
the given data set.

We will now assume that the structure itself is unknown, and suggest
methods for learning it from the given data set.

It is natural here to adopt the same approach we adopted for parameter
estimation, that is, search for network structures that maximize the
probability of observing the given data set.

We will indeed start with this approach first, and then show that it needs
some further refinements, leading to a general class of scoring functions
for network structures.
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Learning Network Structure

Consider the ML estimates for the following structure and data set.

Structure G

A

B C

D

D A B C D

d1 a1 b1 c2 d1

d2 a1 b1 c2 d2

d3 a1 b2 c1 d1

d4 a2 b1 c1 d2

d5 a1 b1 c2 d2

The log-likelihood of this network structure is given by:

LL(G |D) = −13.3
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Learning Network Structure

A

B C

D

A θml
a

a1 4/5
a2 1/5

A B θml
b|a

a1 b1 3/4
a1 b2 1/4
a2 b1 1
a2 b2 0

A C θml
c|a

a1 c1 1/4
a1 c2 3/4
a2 c1 1
a2 c2 0

B D θml
d|b

b1 d1 1/4
b1 d2 3/4
b2 d1 1
b2 d2 0

A network structure with its maximum likelihood parameters.
The log-likelihood of this structure is −13.3
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Learning Network Structure

Consider the ML estimates for the following structure and data set.

Structure G ?

A

B C D

D A B C D

d1 a1 b1 c2 d1

d2 a1 b1 c2 d2

d3 a1 b2 c1 d1

d4 a2 b1 c1 d2

d5 a1 b1 c2 d2

The log-likelihood of this network structure is given by:

LL(G ?|D) = −14.1,

which is smaller than the likelihood for structure G .
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Learning Network Structure

A

B C D

A θml
a

a1 4/5
a2 1/5

A B θml
b|a

a1 b1 3/4
a1 b2 1/4
a2 b1 1
a2 b2 0

A C θml
c|a

a1 c1 1/4
a1 c2 3/4
a2 c1 1
a2 c2 0

A D θml
d|a

a1 d1 1/2
a1 d2 1/2
a2 d1 0
a2 d2 1

A network structure with its maximum likelihood parameters.
The log-likelihood of this structure is −14.1
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Learning Tree Structures

We will next present an algorithm for finding ML tree structures in
time and space that are quadratic in the number of nodes in the
structure.

Consider the mutual information between two variables in the
empirical distribution:

MID(X ,U)
def
=

∑

x ,u

PrD(x , u) log
PrD(x , u)

PrD(x)PrD(u)

Given a tree structure G with edges U → X , its score is given by

tScore(G |D)
def
=

∑

U → X

MID(X ,U)
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Learning Tree Structures

Trees having a maximal likelihood are precisely those trees that
maximize the above score.

If G is a tree structure, and D is a complete data set, then

argmax
G

tScore(G |D) = argmax
G

LL(G |D)
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Learning Tree Structures

A

B C

D

.32

.32

.32 .02

.07

.17

A

B C

D

(a) mutual information graph (b) maximum spanning tree

A

B C

D

A

B C

D

(c) maximum likelihood tree (d) maximum likelihood tree
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Learning Tree Structures

We can obtain log-likelihood by computing the probability of each
case in the data set using any of these tree structures (and its
corresponding ML estimates).

We can also use an earlier result, which shows that the
log-likelihood corresponds to a sum of terms, one term for each
family in the network.

If we consider the tree structure G in (c) above, this result gives:

LL(G |D)

= −N × (ENTD(A|C) + ENTD(B) + ENTD(C |B) + ENTD(D|B))

= −5× (.400 + .722 + .649 + .649)

= −12.1

The terms correspond to the families of given tree structure: AC ,
B, CB and DB.
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Learning DAG Structures

Suppose now that our goal is to find a maximum likelihood
structure, but without restricting ourselves to tree structures.

B

C D

A

B

C D

A

B

C D

A

(a) tree (b) DAG (c) complete DAG
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Learning DAG Structures

Consider the DAG structure in (b) earlier, which is obtained by
adding an edge D → A to the tree structure in (a).

The log-likelihood of this DAG is given by:

LL(G |D)

= −N × (ENTD(A|C ,D) + ENTD(B) + ENTD(C |B) + ENTD(D|B))

= −5× (0 + .722 + .649 + .649)

= −10.1

which is larger than the log-likelihood of the tree in (a).
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Learning DAG Structures

Only difference between two likelihoods is the entropy term for variable
A, since this is the only variable with different families.

The family of A is AC in the tree, and it is ACD in the DAG. Moreover,

ENTD(A|C ,D) < ENTD(A|C ),

and, hence,
−ENTD(A|C ,D) > −ENTD(A|C ),

which is why the DAG has a larger log-likelihood than the tree.

More generally

If U ⊆ U?, then ENT(X |U) ≥ ENT(X |U?)

By adding more parents to a variable, we will never increase its entropy

term and, hence, will never decrease the log-likelihood of resulting

structure.
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Learning DAG Structures

If DAG G ? is the result of adding edges to DAG G , then

LL(G ?|D) ≥ LL(G |D).

If we simply search for a network structure with maximal
likelihood, we will end up choosing a complete network structure;
that is, a DAG to which no more edges can be added (without
introducing directed cycles).2

2Recall that there are n! complete DAGs over n variables. Each of these
DAGs corresponds to a total variable ordering X1, . . . ,Xn in which variable Xi

has X1, . . . ,Xi−1 as its parents.
Adnan Darwiche Chapter 17 Learning: The Maximum Likelihood Approach



Learning DAG Structures

Complete DAGs are undesirable for a number of reasons:

1 They make no assertions of conditional independence and,
hence, their topology does not reveal any properties of the
distribution they induce.

2 A complete DAG over n variables has a treewidth of n− 1 and
is therefore impossible to work with practically.

3 Complete DAGs suffer from the problem of overfitting, which
refers to the use of a model that has too many parameters
compared to the available data.
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Learning DAG Structures

A classical example for illustrating the problem of overfitting is
that of finding a polynomial that fits a given set of data points
(x1, y1), . . . , (xn, yn).

Consider the following data points for an example:
x y

1 1.1
5 4.5

10 11
15 14.5
20 22

Looking at this data set, one

expects the relationship between x

and y to be linear, suggesting a

model of the form y = ax + b

If we insist on a perfect fit, however, we can use a fourth degree
polynomial, which is guaranteed to fit the data perfectly.
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Learning DAG Structures
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(a) straight line (b) 4th degree polynomial

The problem of overfitting: Even though the fit in (b) is perfect, the

polynomial does not appear to provide a good generalization of the data

beyond the range of the observed data points.
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Learning DAG Structures

In summary, the problem of overfitting materializes when one
focuses on learning a model that fits the data well, without
constraining enough the number of free model parameters.

The result is that one ends up adopting models that are more
complex than necessary.

Moreover, such models tend to provide poor generalizations of the
data and will, therefore, perform poorly on cases that are not part
of the given data set.
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Learning DAG Structures

Even though there is no agreed upon solution to the problem of
overfitting, all available solutions tend to be based on a common
principle known as Occam’s razor, which says that one should
prefer simpler models over more complex models, others things
being equal.

To realize this principle, one needs a measure of model complexity,
and a method for balancing the complexity of a model with its
data fit.

For Bayesian networks (and many other modeling frameworks),
model complexity is measured using the number of independent
parameters in the model.
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Learning DAG Structures

Model complexity

Let G be a DAG over variables X1, . . . ,Xn with corresponding
parents U1, . . . ,Un, and let Y# denote the number of
instantiations for variables Y. The dimension of DAG G is defined
as follows:

||G || def
=

n∑

i=1

||XiUi ||

||XiUi || def
= (Xi

# − 1)Ui
#

Dimension is number of independent parameters in CPTs.
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Learning DAG Structures

B
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A
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A
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A

(a) dimension 7 (b) dimension 9 (c) dimension 15
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Learning DAG Structures

Scoring measures for structure G and data set D of size N:

Score(G |D)
def
= LL(G |D)− ψ(N) · ||G ||

Note: Score is ≤ 0

The first component of this score, LL(G |D), is the log-likelihood
function we considered before.

The second component, ψ(N) · ||G ||, is a penalty term that favors
simpler models, i.e., ones with a smaller number of independent
parameters.

Penalty term has a weight, ψ(N) ≥ 0, which is a function of the
data set size N
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Learning DAG Structures

When the penalty weight ψ(N) is a constant that is independent of
N, one gets score in which model complexity is a secondary issue.

Log-likelihood function LL(G |D) grows linearly in the data set size
N and will quickly dominate the penalty term.

Model complexity will only be used to distinguish between models
that have relatively equal log-likelihood terms.

Scoring measure is known as the Akaike Information Criterion
(AIC).
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Learning DAG Structures

Another, yet more common, choice of the penalty weight is
ψ(N) = log2 N

2 , which leads to a more influential penalty term.

This term grows logarithmically in N, while the log-likelihood term
grows linearly in N.

The influence of model complexity will decrease as N grows,
allowing the log-likelihood term to eventually dominate the score.

This penalty weight gives rise to the Minimum Description Length
(MDL) score:

MDL(G |D)
def
= LL(G |D)−

(
log2 N

2

)
||G ||
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Learning DAG Structures

B

C D

A

= −12.1−
(

log2 5

2

)
(7)

= −12.1− 8.1

= −20.2

B

C D

A

= −10.1−
(

log2 5

2

)
(9)

= −10.1− 10.4

= −20.5

MDL prefers first structure even though it has smaller
log-likelihood.
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Learning DAG Structures

The MDL score is also known as the Bayesian Information
Criterion (BIC).

It is sometimes expressed as the negative of the given score, where
the goal is to minimize the score instead of maximizing it.
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Searching for Network Structure

Searching for a network structure that optimizes a particular score can be
quite expensive due to the very large number of structures one may need
to consider.

Greedy algorithms tend to be of more practical use when learning
network structures.

Systematic search algorithms can also be practical, but only under some
conditions.

Both classes of algorithms rely for their efficient implementation on a
property that most scoring functions have.

decomposability or modularity: allows one to decompose the score into

an aggregate of local scores, one for each network family.
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Searching for Network Structure

Score for structure G and data set D of size N

Score(G |D)
def
= LL(G |D)− ψ(N) · ||G ||

Let XU range over the families of DAG G

This score can be decomposed as follows:

Score(G |D) =
∑

XU

Score(X ,U|D),

where

Score(X ,U|D)
def
= − N · ENTD(X |U)− ψ(N) · ||XU||
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Local Search

A

B C

D
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D
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D
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D

A

B C

D

Add

Reverse

Remove

Add

Adding or removing an edge will change only one family, while reversing an edge will change only two families.

Hence, the score can always be updated locally as a result of the local network change induced by adding, removing

or reversing an edge.
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Local Search

The local modifications to the structure are then constrained to:
adding an edge, removing an edge, or reversing an edge, while
ensuring that the structure remains a DAG.

These local changes to the network structure will also change the
score, possibly increasing or decreasing it.

The goal, however, is to commit to the change that will increase
the score the most.

If none of the local changes can increase the score, the algorithm
will terminate and return the current structure.
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Local Search

Local search is not guaranteed to return an optimal network
structure, i.e., one that has the largest score.

The only guarantee provided by the algorithm is that the structure
it returns will be locally optimal in that no local change can
improve its score.

This sub-optimal behavior of local search can usually be improved
by techniques such as random restarts.

According to this technique, one would repeat the local search
multiple times, each time starting with a different initial network,
and then return the network with the best score across all
repetitions.
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Constraining the Search Space

A common technique for reducing the search space size is to
assume a total ordering on network variables and then search only
among network structures that are consistent with the chosen
order.

If we use the variable order X1, . . . ,Xn, the search process can by
viewed as trying to find, for each variable Xi , a set of parents
Ui ⊆ X1, . . . ,Xi−1

Not only does this technique reduce the size of search space, but it
also allows one to decompose the search problem into n
independent problems, each concerned with finding a set of parents
for some network variable.
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Greedy Search

One of the more effective heuristic algorithms for optimizing a
family score is known as K3.3

This algorithm starts with an empty set of parents, successively
adding variables to the set, one at a time, until such additions will
no longer increase the score.

3The name K3 refers to the version of this algorithm that optimizes the
MDL score, although it also applies to other scores as well. Another version of
this heuristic algorithm, called K2, works similarly but using a different score to
be discussed in Chapter 18
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Constraining the Search Space
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Greedy search for a parent set for variable X5
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Greedy Search

Suppose the goal is to find a set of parents for X5 from the set of variables
X1, . . . ,X4. The K3 algorithm will start by setting U5 to the empty set, and
then find a variable Xi (if any), i = 1, . . . , 4, that will maximize

Score(X5,Xi |D) ≥ Score(X5|D)

Suppose that X3 happens to be such a variable. The algorithm will then set
U5 = {X3} and search for another variable Xi in X1,X2,X4 that will maximize

Score(X5,X3Xi |D) ≥ Score(X5,X3|D)

Suppose again that X2 happens to be such a variable, leading to the new set of
parents U5 = {X2,X3}

It may happen that adding X1 to this set will not increase the score, and
neither will adding X4

In this case, K3 will terminate, returning U5 = {X2,X3} as the parent set for X5
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Greedy Search

K3 is a greedy algorithm that is not guaranteed to identify the
optimal set of parents Ui , i.e., the one that maximizes
Score(Xi ,Ui |D)

Therefore, it is not uncommon to use the structure obtained by
this algorithm as a starting point for other algorithms, such as the
local search algorithm discussed earlier, or the optimal search
algorithm we shall discuss next.
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Optimal Search

We will next discuss an optimal search algorithm for network
structures, which is based on branch-and-bound depth-first search.

Similar to K3, the algorithm will assume a total order of network
variables, X1, . . . ,Xn and search only among network structures
that are consistent with this order.

As mentioned earlier, this allows one to decompose the search
process into n independent search problems.
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Optimal Search

{}

{X1} {X2} {X3} {X4}

{X1, X2} {X1, X3} {X1, X4} {X2, X3} {X2, X4} {X3, X4}

{X1, X2, X3} {X1, X2, X4} {X1, X3, X4} {X2, X3, X4}

{X1, X2 , X3, X4}

(a) order X1,X2,X3,X4

Tree nodes are in one-to-one correspondence with parent sets for X5. A search tree for variable Xi will have a

total of 2i−1 nodes, corresponding to the number of subsets one can choose from variables X1, . . . , Xi−1
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Optimal Search

{}

{X4} {X2} {X3} {X1}

{X4, X2} {X4, X3} {X4, X1} {X2, X3} {X2, X1} {X3, X1}

{X4, X2, X3} {X4, X2, X1} {X4, X3, X1} {X2, X3, X1}

{X4, X2 , X3, X1}

(b) order X4,X2,X3,X1

Tree nodes are in one-to-one correspondence with parent sets for X5. A search tree for variable Xi will have a

total of 2i−1 nodes, corresponding to the number of subsets one can choose from variables X1, . . . , Xi−1
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Optimal Search

One can search the tree using depth-first search, while maintaining the score s
of the best parent set visited thus far.

The complexity of this algorithm can be improved on average if one can
compute for each search node Ui an upper bound on Score(Xi ,U

?
i |D), where

Ui ⊆ U?i

If the computed upper bound at node Ui is not better than the best score s
obtained thus far, then one can prune Ui and all nodes below it in the search
tree, since none of these parent sets can be better than the one found thus far.

This pruning allows one to escape the exponential complexity in some cases.

The extent of pruning depends on the quality of upper bound used.

Adnan Darwiche Chapter 17 Learning: The Maximum Likelihood Approach



Optimal Search

Upper bound for MDL score

Let Ui be a parent set, and let U+
i be the largest parent set

appearing below Ui in the search tree. If U?
i is a parent set in the

tree rooted at Ui , then

MDL(Xi ,U
?
i |D) ≤ −N · ENTD(Xi |U+

i )− ψ(N) · ||XiUi ||

Consider tree in (a). At the search node U5 = {X2}, we get
U+

5 = {X2,X3,X4}. Moreover, U?
5 ranges over parent sets {X2},

{X2,X3}, {X2,X4} and {X2,X3,X4}
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Optimal Search

Our discussion on the search for network structures has been
restricted to complete data sets.

The main reason for this is computational.

The likelihood of a network structure does not admit a closed form
when the data set is incomplete and does not decompose into
components.

Algorithms for learning structures with incomplete data will
typically involve two searches: an outer search in the space of
network structures, and an inner search in the space of network
parameters.
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