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Capturing Independence Graphically

Earthquake?

(E)

Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

Assume that edges in this
graph represent direct causal
influences among these
variables.

Example

The alarm triggering (A) is a direct cause of receiving a call from a
neighbor (C ).
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Capturing Independence Graphically

Earthquake?

(E)

Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

We expect our belief in C to
be influenced by evidence on R

If we get a radio report that an
earthquake took place in our
neighborhood, our belief in the
alarm triggering would probably
increase, which would also
increase our belief in receiving
a call from our neighbor.
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Capturing Independence Graphically

Earthquake?

(E)

Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

We would not change this
belief, however, if we knew for
sure that the alarm did not
trigger.

C independent of R given ¬A
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Capturing Independence Graphically

Visit to Asia?

(A)

Smoker?

(S)

Tuberculosis?

(T)

Lung Cancer?

(C)

Bronchitis?

(B)

Tuberculosis or Cancer?

(P)

Positive X-Ray?

(X)

Dyspnoea?

(D)

We would clearly find a visit to
Asia relevant to our belief in
the X-Ray test coming out
positive, but we would find the
visit irrelevant if we know for
sure that the patient does not
have Tuberculosis.

X is dependent on A, but is
independent of A given ¬T
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Capturing Independence Graphically

These examples of independence are all implied by a formal
interpretation of each DAG as a set of conditional independence
statements.

Parents(V )

variables N with an edge from N to V

Descendants(V )

variables N with a directed path from V to N.
V is said to be an ancestor of N

Non Descendants(V )

variables other than V , Parents(V ) and Descendants(V )
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Capturing Independence Graphically

Markovian assumptions of a DAG

We will formally interpret each DAG G as a compact representation
of the following independence statements, denoted Markov(G ):

I (V ,Parents(V ),Non Descendants(V )),

for all variables V in DAG G

DAG as a causal structure

Parents(V ) denote the direct causes of V and Descendants(V )
denote the effects of V

Markovian assumptions restated

Given the direct causes of a variable, our beliefs in that variable
become independent of its non–effects.
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Capturing Independence Graphically

Earthquake?

(E)

Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

Markovian assumptions,
Markov(G ):

I (C ,

A, {B,E ,R})
I (R,E , {A,B,C})
I (A, {B,E},R)
I (B, ∅, {E ,R})
I (E , ∅,B)

Variables B and E have no parents, hence, they are marginally
independent of their non-descendants.
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Capturing Independence Graphically

Hidden Markov Model

1
S

2
S

3
S

n
S

1
O

2
O

3
O

n
O

S1,S2, . . . ,Sn

The state of a dynamic system
at time points 1, 2, . . . , n

O1,O2, . . . ,On

Sensors that measure the
system state at the
corresponding time points.

Usually, one has some information about the sensor readings and is
interested in computing beliefs in the system states.
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Capturing Independence Graphically

Hidden Markov Model

1
S

2
S

3
S

n
S

1
O

2
O

3
O

n
O

The Markovian assumptions
imply that

once we know the state of the
system at the previous time
point, t − 1, our belief in the
present system state, at t, is no
longer influenced by any other
information about the past.

Characteristic property of HMMs

I (St , {St−1}, {S1, . . . ,St−2,O1, . . . ,Ot−1})
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Capturing Independence Graphically

Interpretation of DAGs in terms of conditional independence makes
no reference to causality

even though we have used causality to motivate this interpretation.

If one constructs the DAG based on causal perceptions

one tends to agree with the independencies declared by the DAG.

Possible to have a DAG that does not match our causal perceptions

yet we agree with the independencies declared by the DAG.
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Capturing Independence Graphically

DAG is causal

Earthquake?

(E)

Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

DAG is not causal

Earthquake?

(E)
Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

Every independence which is declared (or implied) by the second
DAG is also declared (or implied) by the first one. Hence, if we
accept the first DAG, then we must also accept the second.
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Parameterizing the Independence Structure

Earthquake?

(E)

Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

DAG G is a partial specification of our
state of belief Pr

By constructing G , we are saying that
Pr must satisfy the independence
assumptions in Markov(G )

This constrains Pr but does not
uniquely define it.

We can augment the DAG G by a set of conditional probabilities
that together with Markov(G ) define the distribution Pr uniquely.
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Parameterizing the Independence Structure

Earthquake?

(E)

Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

For every variable X and its parents U

Need probability Pr(x |u) for every
value x and every instantiation u

We need to provide the following conditional probabilities

Pr(c |a), Pr(r |e), Pr(a|b, e), Pr(e), Pr(b),
where a, b, c , e and r are values of variables A,B,C ,E and R
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Parameterizing the Independence Structure

Earthquake?

(E)

Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

Conditional probabilities for variable C

A C Pr(c|a)
true true .80
true false .20
false true .001
false false .999

Conditional Probability Table (CPT)

Pr(c |a) + Pr(c̄|a) = 1 and Pr(c |ā) + Pr(c̄|ā) = 1

Two of the probabilities in the above CPT are redundant and can
be inferred from the other two. We only need 10 independent
probabilities to completely specify the CPTs for this DAG.
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Bayesian Networks

Definition

A Bayesian network for variables Z is a pair (G ,Θ), where

G is a directed acyclic graph over variables Z, called the
network structure.

Θ is a set of conditional probability tables (CPTs), one for
each variable in Z, called the network parametrization.

ΘX |U: CPT for variable X and its parents U

XU: called a network family

θx |u = Pr(x |u): called a network parameter

We must have
∑

x θx |u = 1 for every parent instantiation u
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An Example Bayesian Network

Winter? 

(A)

Sprinkler? 

(B)

Wet Grass?

(D)

Rain?

(C)

Slippery Road?

(E)

A B ΘB|A
true true .2
true false .8
false true .75
false false .25

A C ΘC|A
true true .8
true false .2
false true .1
false false .9

A ΘA
true .6
false .4

B C D ΘD|B,C

true true true .95
true true false .05
true false true .9
true false false .1
false true true .8
false true false .2
false false true 0
false false false 1

C E ΘE|C
true true .7
true false .3
false true 0
false false 1
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Notation

A network instantiation

is an instantiation of all network variables.

θx |u ∼ z

means that instantiations xu and z are compatible (i.e., agree on
the values they assign to their common variables).

Example

θa, θb|a, θc̄|a, θd |b,c̄ , and θē|c̄ are all the network parameters
compatible with network instantiation a, b, c̄ , d , ē
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The Distribution of a Bayesian Network

A Bayesian network induces distribution

Pr(z)
def
=

∏
θx|u∼z θx |u

The probability assigned to a network instantiation z

is the product of all network parameters that are compatible with z

This is called the chain rule of Bayesian networks.
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The Distribution of a Bayesian Network

Winter? 

(A)

Sprinkler? 

(B)

Wet Grass?

(D)

Rain?

(C)

Slippery Road?

(E)

Pr(a, b, c̄ , d , ē)

= θa θb|a θc̄|a θd |b,c̄ θē|c̄
= (.6)(.2)(.2)(.9)(1)
= .0216

Pr(ā, b̄, c̄ , d̄ , ē)

= θā θb̄|ā θc̄|ā θd̄ |b̄,c̄ θē|c̄
= (.4)(.25)(.9)(1)(1)
= .09
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(B)

Wet Grass?

(D)

Rain?

(C)

Slippery Road?

(E)

Pr(a, b, c̄ , d , ē)

= θa θb|a θc̄|a θd |b,c̄ θē|c̄
= (.6)(.2)(.2)(.9)(1)
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The Size of a Bayesian Network

The CPT ΘX |U is exponential in the number of parents U

If every variable has d values and at most k parents

the size of any CPT is bounded by O(dk+1)

If we have n network variables

total number of network parameters is bounded by O(n · dk+1)

This number is quite reasonable

as long as the number of parents per variable is relatively small.
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The Size of a Bayesian Network

Variable Si has m values and similarly for variables Oi

Hidden Markov Model

1
S

2
S

3
S

n
S

1
O

2
O

3
O

n
O

The CPT for any state variable
Si , i > 1, has m2 parameters,
known as transition
probabilities.

The CPT for any sensor
variable Oi has m2 parameters,
known as emission or sensor
probabilities.

The CPT for S1 has m parameters.
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Properties of Probabilistic Independence

Earthquake?

(E)

Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

The distribution Pr specified by a
Bayesian network (G ,Θ) satisfies
every independence assumption in
Markov(G )

These are not the only independencies satisfied by the distribution.

B and E independent given R

yet this independence is not part of Markov(G )
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Properties of Probabilistic Independence

Earthquake?

(E)

Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

B and E are
independent given R

This independence and additional ones

follow from the ones in Markov(G ) using a set of properties for
probabilistic independence, known as the graphoid axioms.
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Properties of Probabilistic Independence

Recall the definition of IPr(X,Z,Y)

Variables X independent of variables Y given variables Z

IPr(X,Z,Y) iff

Pr(x|z, y) = Pr(x|z) or Pr(y, z) = 0

for all instantiations x, y, z
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Symmetry

Earthquake?

(E)

Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

IPr(X,Z,Y) iff IPr(Y,Z,X)

Learning y does not influence
our belief in x iff learning x does
not influence our belief in y

Example

From Markov(G ), we have IPr(A, {B,E},R). Using Symmetry, we
get IPr(R, {B,E},A) which is not part of Markov(G )
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Decomposition

IPr(X,Z,Y ∪W) only if IPr(X,Z,Y) and IPr(X,Z,W)

If learning yw does not influence our belief in x, then learning y
alone, or learning w alone, will not influence our belief in x either.

If some information is irrelevant, then any part of it is also
irrelevant.
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Decomposition

Visit to Asia?

(A)

Smoker?

(S)

Tuberculosis?

(T)

Lung Cancer?

(C)

Bronchitis?

(B)

Tuberculosis or Cancer?

(P)

Positive X-Ray?

(X)

Dyspnoea?

(D)

Example

Markov(G ) implies
I (B,S , {A,C ,P,T ,X})
Decomposition tells us I (B,S ,C )

This independence holds in any probability distribution induced by
a parametrization of DAG G . Yet, this independence is not part of
the independencies declared by Markov(G )
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Decomposition

An implication of Decomposition

IPr(X ,Parents(X ),W) for every W ⊆ Non Descendants(X )

Every variable X is conditionally independent of any subset of its
non-descendants given its parents.

This is a strengthening of the independence statements declared by
Markov(G ), which is a special case when W contains all
non-descendants of X
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Decomposition: The chain rule for Bayesian networks

By the chain rule of probability calculus

Pr(r , c , a, e, b) = Pr(r |c , a, e, b)Pr(c |a, e, b)Pr(a|e, b)Pr(e|b)Pr(b)

Earthquake?

(E)

Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

By Decomposition

Pr(r |c , a, e, b) = Pr(r |e)
Pr(c |a, e, b) = Pr(c |a)

Pr(e|b) = Pr(e)

This leads to the chain rule of Bayesian networks

Pr(r , c , a, e, b) = Pr(r |e)Pr(c |a)Pr(a|e, b)Pr(e)Pr(b)
= θr |e θc|a θa|e,b θe θb
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Decomposition

Proof generalizes to any Bayesian network over variables Z

as long as we order variables Z such that the parents U of each
variable X appear after X in the order.

This ordering constraint ensures two things:

For every term Pr(x |α) that results from applying the chain
rule to Pr(z), some instantiation u of parents U is guaranteed
to be in α.

The only other variables appearing in α, beyond parents U,
must be non-descendants of X .

Hence, the term Pr(x |α) must equal the network parameter θx |u
by Decomposition.
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Decomposition

The variable ordering c , a, r , b, e gives

Pr(c , a, r , b, e) = Pr(c |a, r , b, e)Pr(a|r , b, e)Pr(r |b, e)Pr(b|e)Pr(e)

Earthquake?

(E)

Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

By Decomposition

Pr(c |a, r , b, e) = Pr(c |a)
Pr(a|r , b, e) = Pr(a|b, e)

Pr(r |b, e) = Pr(r |e)
Pr(b|e) = Pr(b)

We then have

Pr(c , a, r , b, e) = Pr(c |a)Pr(a|b, e)Pr(r |e)Pr(b)Pr(e)
= θc|a θa|b,e θr |e θb θe
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Decomposition

The variable ordering on, . . . , o1, sn, . . . , s1 gives

Pr(on, . . . , o1, sn, . . . , s1) =
Pr(on|on−1 . . . , o1, sn, . . . , s1) . . .Pr(o1|sn, . . . , s1)Pr(sn|sn−1 . . . , s1) . . .Pr(s1)

By Decomposition

Pr(on, . . . , o1, sn, . . . , s1)
= Pr(on|sn) . . .Pr(o1|s1)Pr(sn|sn−1) . . .Pr(s1)
= θon|sn . . . θo1|s1

θsn|sn−1
. . . θs1 .

1
S

2
S

3
S

n
S

1
O

2
O

3
O

n
O

Pr(on, . . . , o1, sn, . . . , s1)

is now expressed as a product of network parameters.
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Composition

IPr(X,Z,Y) and IPr(X,Z,W) only if IPr(X,Z,Y ∪W)

Composition is the opposite of Decomposition.

Composition does not hold in general

Two pieces of information may each be irrelevant on their own, yet
their combination may be relevant.

Example

An exclusive-or gate with uniform distribution on each input. Each
input on its own is irrelevant to the output. Yet, both inputs
together are relevant.
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Weak Union

IPr(X,Z,Y ∪W) only if IPr(X,Z ∪ Y,W)

If the information yw is not relevant to our belief in x, then the
partial information y will not make the rest of the information, w,
relevant.

Earthquake?

(E)

Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

Markov(G ) gives

I (C ,A, {B,E ,R})

By Weak Union

I (C , {A,B,E},R) which is not
part of Markov(G )
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Weak Union

An implication of Weak Union

IPr(X ,Parents(X ) ∪W,Non Descendants(X ) \W)

for any W ⊆ Non Descendants(X )

Each variable X in DAG G is independent of any of its
non-descendants given its parents and the remaining
non-descendants.

This can be viewed as a strengthening of the independencies
declared by Markov(G ), which fall as a special case when the set
W is empty.
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Contraction

IPr(X,Z,Y) and IPr(X,Z ∪ Y,W) only if IPr(X,Z,Y ∪W)

If after learning the irrelevant information y, the information w is
found to be irrelevant to our belief in x, then the combined
information yw must have been irrelevant from the beginning.

Compare Contraction with Composition

IPr(X,Z,Y) and IPr(X,Z,W) only if IPr(X,Z,Y ∪W)

One can view Contraction as a weaker version of Composition.
Recall that Composition does not hold for probability distributions.
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Strictly Positive Distributions

A strictly positive distribution

assign a non-zero probability to every consistent event.

A B

E

DC

X
Y

Z

Example

A strictly positive distribution
cannot represent the behavior
of Inverter X as it will have to
assign the probability zero to
the event A=true,C =true

A strictly positive distribution cannot capture logical constraints.
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Intersection

Holds only for strictly positive distributions.

IPr(X,Z ∪W,Y) and IPr(X,Z ∪ Y,W) only if IPr(X,Z,Y ∪W)

If information w is irrelevant given y, and y is irrelevant given w,
then combined information yw is irrelevant to start with.

A B

E

DC

X
Y

Z

Given A, C irrelevant to E

Given C , A irrelevant to E

Yet

A and C are not irrelevant to E
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A and C are not irrelevant to E
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The Graphoid Axioms

Triviality: IPr(X,Z, ∅)

Symmetry, Decomposition, Weak Union, and Contraction,
combined with Triviality, are known as the graphoid axioms.

With Intersection, the set is known as the positive graphoid axioms.

Decomposition, Weak Union, and Contraction in one statement

IPr(X,Z,Y ∪W) iff IPr(X,Z,Y) and IPr(X,Z ∪ Y,W)

The terms semi-graphoid and graphoid are sometimes used instead
of graphoid and positive graphoid, respectively.
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A Graphical Test of Independence

The inferential power of the graphoid axioms can be captured
using a graphical test, known as d-separation, which allows one to
mechanically derive the independencies implied by these axioms.

X and Y are d-separated by Z, written dsepG (X,Z,Y)

iff every path between a node in X and a node in Y is blocked by Z

The definition of d-separation relies on

the notion of blocking a path by a set of variables Z

dsepG (X,Z,Y) implies IPr(X,Z,Y)

for every probability distribution Pr induced by G
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d-separation

View the path as a pipe

and view each variable W on the path as a valve.

A valve W is either open or closed

depending on some conditions that we state later.

If at least one of the valves on the path is closed

the whole path is blocked. Otherwise, the path is not blocked.
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d-separation

The type of a valve

is determined by its relationship to its neighbors on the path.

sequential →W→

W

divergent ←W→

W

convergent →W←

W
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d-separation

A path with 6 valves

From left to right

convergent, divergent, sequential, convergent, sequential, and
sequential.
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d-separation

sequential valve

Earthquake?

(E)
Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

A is intermediary
between cause E
and effect C

divergent valve

Earthquake?

(E)
Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

E is common cause
of effects R and A

convergent valve

Earthquake?

(E)
Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

A is common effect
of causes E and B
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d-separation

Given that we know Z

when is a sequential valve closed?

Earthquake?

(E)
Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

Valve E→A→C is closed iff

we know the value of variable
A, otherwise an earthquake E
may change our belief in
getting a call C .

A sequential valve →W→ is closed iff variable W appears in Z
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d-separation

Given that we know Z

when is a divergent valve closed?

Earthquake?

(E)
Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

Valve R←E→A is closed iff

we know the value of variable
E , otherwise a radio report on
an earthquake may change our
belief in the alarm triggering.

A divergent valve ←W→ is closed iff variable W appears in Z
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d-separation

Given that we know Z

when is a convergent valve closed?

Earthquake?

(E)
Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

Valve E→A←B is closed iff

neither the value of variable A
nor the value of C are known,
otherwise, a burglary may
change our belief in an
earthquake.

A convergent valve →W← is closed iff neither variable W nor any
of its descendants appears in Z

Adnan Darwiche Chapter 4: Bayesian Networks



d-separation

Given that we know Z

when is a convergent valve closed?

Earthquake?

(E)
Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

Valve E→A←B is closed iff

neither the value of variable A
nor the value of C are known,
otherwise, a burglary may
change our belief in an
earthquake.

A convergent valve →W← is closed iff neither variable W nor any
of its descendants appears in Z

Adnan Darwiche Chapter 4: Bayesian Networks



d-separation

Given that we know Z

when is a convergent valve closed?

Earthquake?

(E)
Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

Valve E→A←B is closed iff

neither the value of variable A
nor the value of C are known,
otherwise, a burglary may
change our belief in an
earthquake.

A convergent valve →W← is closed iff neither variable W nor any
of its descendants appears in Z

Adnan Darwiche Chapter 4: Bayesian Networks



d-separation

X and Y are d-separated by Z, written dsepG (X,Z,Y), iff

every path between a node in X and a node in Y is blocked by Z

A path is blocked by Z iff

at least one valve on the path is closed given Z

A path with no valves (i.e., X → Y ) is never blocked.
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d-separation

Earthquake?

(E)
Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

closed open

Are B and R d-separated by E
and C?

Yes

The closure of only one valve is
sufficient to block the path,
therefore, establishing
d-separation.
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d-separation

Earthquake?

(E)
Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

open
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Are C and R d-separated?

No

Both valves are open. Hence,
the path is not blocked and
d-separation does not hold.
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d-separation

Visit to Asia?

(A)

Smoker?

(S)

Tuberculosis?

(T)
Lung Cancer?

(C)

Bronchitis?

(B)

Tuberculosis or Cancer?

(P)

Positive X-Ray?

(X)

Dyspnoea?

(D)

open

closed

closed

Are C and B d-separated by S?

Yes

Both paths between them are
blocked by S .
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d-separation

Is IPr(S1,S2, {S3, S4}) for any probability distribution Pr induced
by the DAG?

1
S

2
S

3
S

n
S

1
O

2
O

3
O

n
O

closed

Valve S1→S2→S3 on every path
between S1 and {S3,S4}

Valve is closed given S2

Every path from S1 to {S3,S4} is
blocked by S2 and we have
dsepG (S1,S2, {S3,S4})

Adnan Darwiche Chapter 4: Bayesian Networks



d-separation

Is IPr(S1,S2, {S3, S4}) for any probability distribution Pr induced
by the DAG?

1
S

2
S

3
S

n
S

1
O

2
O

3
O

n
O

closed

Valve S1→S2→S3 on every path
between S1 and {S3,S4}

Valve is closed given S2

Every path from S1 to {S3,S4} is
blocked by S2 and we have
dsepG (S1,S2, {S3,S4})

Adnan Darwiche Chapter 4: Bayesian Networks



d-separation

Is IPr(S1,S2, {S3, S4}) for any probability distribution Pr induced
by the DAG?

1
S

2
S

3
S

n
S

1
O

2
O

3
O

n
O

closed

Valve S1→S2→S3 on every path
between S1 and {S3,S4}

Valve is closed given S2

Every path from S1 to {S3,S4} is
blocked by S2 and we have
dsepG (S1,S2, {S3,S4})

Adnan Darwiche Chapter 4: Bayesian Networks



d-separation

Is IPr(S1,S2, {S3, S4}) for any probability distribution Pr induced
by the DAG?

1
S

2
S

3
S

n
S

1
O

2
O

3
O

n
O

closed

Valve S1→S2→S3 on every path
between S1 and {S3,S4}

Valve is closed given S2

Every path from S1 to {S3,S4} is
blocked by S2 and we have
dsepG (S1,S2, {S3,S4})

Adnan Darwiche Chapter 4: Bayesian Networks



Complexity of d-separation

The definition of d-separation, dsepG (X,Z,Y), calls for

considering all paths connecting a node in X with a node in Y. The
number of such paths can be exponential, yet one can implement the test
without having to enumerate these paths explicitly.

Deciding dsepG (X,Z,Y) is equivalent to testing whether X and Y are
disconnected in a new DAG G ′ obtained by pruning DAG G

Delete any leaf node W from DAG G as long as W not in
X ∪ Y ∪ Z. Repeat until no more nodes can be deleted.

Delete all edges outgoing from nodes in Z.

Decided in time and space that are linear in the size of DAG G
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Complexity of d-separation

Nodes in Z are shaded. Pruned nodes and edges are dotted.

Visit to Asia?

(A)

Smoker?

(S)

Tuberculosis?

(T)
Lung Cancer?

(C)

Bronchitis?

(B)

Tuberculosis or Cancer?

(P)

Positive X-Ray?

(X)

Dyspnoea?

(D)

X

Y

Is X = {A,S} d-separated from Y = {D,X} by Z = {B,P}?
Yes
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Soundness of d-separation

The d-separation test is sound

If distribution Pr is induced by Bayesian network (G ,Θ), then

dsepG (X,Z,Y) only if IPr(X,Z,Y)

The proof of soundness is constructive

showing that every independence claimed by d-separation can
indeed be derived using the graphoid axioms.
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Completeness of d-separation

d-separation is not complete

Consider a network with three binary variables X→Y→Z

Z is not d-separated from X

Z can be independent of X in a probability distribution
induced by this network.

Example

Choose the CPT for variable Y so that θy |x = θy |x̄
Y independent of X since

Pr(y) = Pr(y |x) = Pr(y |x̄) and

Pr(ȳ) = Pr(ȳ |x) = Pr(ȳ |x̄)

Z is also independent of X
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Completeness of d-separation

By choosing the parametrization Θ carefully, we were able to
establish an independence in the induced distribution which
d-separation cannot detect.

If X and Y are d-separated by Z

then X and Y are independent given Z for any parametrization Θ

If X and Y are not d-separated by Z

then whether X and Y are dependent given Z depends on the
specific parametrization Θ
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Completeness of d-separation

Can we always parameterize a DAG G in such a way to ensure the
completeness of d-separation?

For every DAG G , there is a parametrization Θ such that

IPr(X,Z,Y) if and only if dsepG (X,Z,Y)

There is no other graphical test

which can derive more independencies from Markov(G ) than those
derived by d-separation.
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Further Properties of d-separation

Probabilistic independence does not satisfy Composition

IPr(X,Z,Y) and IPr(X,Z,W) only if IPr(X,Z,Y ∪W)

d-separation satisfies Composition

dsep(X,Z,Y) and dsep(X,Z,W) only if dsep(X,Z,Y ∪W)

Implication...

If we have a distribution that satisfies IPr(X,Z,Y) and
IPr(X,Z,W) but not IPr(X,Z,Y ∪W), there could not exist a
DAG G which induces Pr and at the same time satisfies
dsepG (X,Z,Y) and dsepG (X,Z,W).
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Further Properties of d-separation

d-separation satisfies additional properties

beyond Composition, which do not hold for arbitrary distributions.

d-separation satisfies Intersection

dsep(X,Z∪W,Y) and dsep(X,Z∪Y,W) only if dsep(X,Z,Y∪W)

d-separation satisfies Chordality

dsep(X , {Z ,W },Y ) and dsep(W , {X ,Y },Z ) only if
dsep(X ,Z ,Y ) or dsep(X ,W ,Y )
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More on DAGs and Independence

G is an independence MAP (I-MAP) of Pr iff

dsepG (X,Z,Y) only if IPr(X,Z,Y)

An I-MAP G is minimal iff

G ceases to be an I-MAP when we delete any edge from G

By the semantics of Bayesian networks

if Pr is induced by a Bayesian network (G ,Θ), then G must be an
I-MAP of Pr, although it may not be minimal.
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More on DAGs and Independence

DAG G is a dependency MAP (D-MAP) of distribution Pr iff

IPr(X,Z,Y) only if dsepG (X,Z,Y)

If G is a D-MAP of Pr
then the lack of d-separation in G implies a dependence in Pr

DAG G is a perfect MAP (P-MAP) of distribution Pr iff

G is both an I-MAP and a D-MAP of Pr
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Minimal I-MAPs

Given a distribution Pr, how can we construct a DAG G which is
guaranteed to be a minimal I-MAP of Pr?

Given an ordering X1, . . . ,Xn of the variables in Pr:

Start with an empty DAG G (no edges)

Consider the variables Xi one by one, for i = 1, . . . , n

For each variable Xi , identify a minimal subset P of the
variables in X1, . . . ,Xi−1 such that

IPr(Xi ,P, {X1, . . . ,Xi−1} \ P)
Make P the parents of Xi in DAG G

The resulting DAG is a minimal I-MAP of Pr
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Minimal I-MAPs

Construct a minimal I-MAP G for some distribution Pr using the
previous procedure and variable order A,B,C ,E ,R.

Earthquake?

(E)

Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

Suppose that DAG G ′ is a
P-MAP of distribution Pr

Independence tests IPr(Xi ,P, {X1, . . . ,Xi−1} \ P)

can now be reduced to equivalent d-separation tests
dsepG ′(Xi ,P, {X1, . . . ,Xi−1} \ P)
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Minimal I-MAPs

Variable order A,B,C ,E ,R

Earthquake?

(E)
Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

A: P = ∅
B: P = A since dsepG ′(B,A, ∅) and not dsepG ′(B, ∅,A)

C : P = A since dsepG ′(C ,A,B) and not dsep(C , ∅, {A,B})
E : P = A,B is the smallest subset of A,B,C such that

dsepG ′(E ,P, {A,B,C} \ P)

R: P = E is the smallest subset of A,B,C ,E such that
dsepG ′(R,P, {A,B,C ,E} \ P)
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Minimal I-MAPs

DAG G ′ and distribution Pr

Earthquake?

(E)

Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

Minimal I-MAP G

Earthquake?

(E)
Burglary?

(B)

Alarm?

(A)

Call?

(C)

Radio?

(R)

If dsepG (X,Z,Y), then dsepG ′(X,Z,Y) and IPr(X,Z,Y)
This ceases to hold if we delete any of the five edges in G

If we delete the edge E ← B

we will have dsepG (E ,A,B), yet dsepG ′(E ,A,B) does not hold.
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Uniqueness of Minimal I-MAPs

The minimal I-MAP of a distribution is not unique

we may get different ones depending on the chosen variable order.

Even when using the same variable ordering

we may have multiple minimal subsets P of {X1, . . . ,Xi−1} for
which IPr(Xi ,P, {X1, . . . ,Xi−1} \ P)

This can only happen if

the probability distribution represents some logical constraints.

We can ensure the uniqueness of a minimal I-MAP for a given
variable ordering

if we restrict ourselves to strictly positive distributions.
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Blankets and Boundaries

A Markov blanket for variable X

is a set of variables which, when known, will render every other
variable irrelevant to X

A Markov blanket B is minimal iff

no strict subset of B is also a Markov blanket.

A minimal Markov blanket

is called a Markov Boundary.

The Markov Boundary is not unique

unless the distribution is strictly positive.
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Blankets and Boundaries

If distribution Pr is induced by DAG G

then a Markov blanket for variable X with respect to Pr can be
constructed using its parents, children, and spouses in DAG G

Variable Y is a spouse of X iff

the two variables have a common child in DAG G
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Blankets and Boundaries

Visit to Asia?

(A)

Smoker?

(S)

Tuberculosis?

(T)

Lung Cancer?

(C)

Bronchitis?

(B)

Tuberculosis or Cancer?

(P)

Positive X-Ray?

(X)

Dyspnoea?

(D)

Markov blanket for C

S ,P,T

1
S

2
S

3
S

n
S

1
O

2
O

3
O

n
O

Markov blanket for St , t > 1

St−1,St+1,Ot
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