Chapter 14: Approximate Inference by Belief Propagation

Adnan Darwiche¹

¹Lecture slides for *Modeling and Reasoning with Bayesian Networks*, Adnan Darwiche, Cambridge University Press, 2009.

We discuss in this chapter a class of approximate inference algorithms which are based on belief propagation. These algorithms provide a full spectrum of approximations, allowing one to trade-off approximation quality with computational resources.

В

true

false

true

false

С	Θ_C
true	.001
false	.999

В	С	D	$\Theta_{D BC}$
true	true	true	.99
true	true	false	.01
true	false	true	.90
true	false	false	.10
false	true	true	.95
false	true	false	.05
false	false	true	.01
false	false	false	.99

A

true

false

 Θ_A

.01

.99

D	Е	$\Theta_{E D}$
true	true	.9
true	false	.1
false	true	.3
false	false	.7

 $\Theta_{B|A}$

.100

.900

.001

.999

D	F	$\Theta_{F D}$
true	true	.2
true	false	.8
false	true	.1
false	false	.9

э

A

true

true

false

false

- A node *i* in the jointree, which corresponds to variable X in the polytree, will have its cluster as C_i = XU, where U are the parents of X in the polytree.
- An undirected edge *i−j* in the jointree, which corresponds to edge X → Y in the polytree, will have its separator as S_{ij} = X.

$$\Pr(X\mathbf{U}, \mathbf{e}) = \lambda_{\mathbf{e}}(X)\Theta_{X|\mathbf{U}}\prod_{i}\pi_{X}(U_{i})\prod_{j}\lambda_{Y_{j}}(X)$$

・ロト ・ 同ト ・ ヨト

- E

Messages propagated towards node D under evidence E = true. We have three π -messages in this case:

Α	$\pi_B(A)$	В		$\pi_D(B)$	С	$\pi_D(C)$
true	.01	tr	ue	.00199	true	.001
false	.99	fa	lse	.99801	false	.999

We also have two λ -messages:

D	$\lambda_E(D)$	D	$\lambda_F(D)$
true	.9	true	1
false	.3	false	1

Adnan Darwiche Chapter 14: Approximate Inference by Belief Propagation

To compute the joint marginal for the family of variable D, we simply evaluate:

$$\Pr(BCD, \mathbf{e}) = \Theta_{D|BC} \cdot \pi_D(B) \pi_D(C) \cdot \lambda_E(D) \lambda_F(D)$$

leading to the following:

В	С	D	Pr(BCD, e)
true	true	true	1.7731×10^{-6}
true	true	false	$5.9700 imes 10^{-9}$
true	false	true	1.6103×10^{-3}
true	false	false	5.9640×10^{-5}
false	true	true	8.5330×10^{-4}
false	true	false	1.4970×10^{-5}
false	false	true	8.9731×10^{-3}
false	false	false	2.9611×10^{-1}

By summing all table entries, we find that $Pr(\mathbf{e}) \approx 0.3076$.

イボト イヨト イヨト

We can also compute the joint marginal for variable C once we compute the message passed from D to C:

С	$\lambda_D(C)$	С	$\Pr(C, \mathbf{e})$
true	0.8700	true	0.0009
false	0.3071	false	0.3067

Note that we could have also computed the joint marginal for variable *C* using the joint marginal for the family of *D*: $Pr(C, \mathbf{e}) = \sum_{BD} Pr(BCD, \mathbf{e}).$ $BEL(X\mathbf{U})$ denotes the conditional marginal $Pr(X\mathbf{U}|\mathbf{e})$:

$$BEL(X\mathbf{U}) = \eta \lambda_{\mathbf{e}}(X)\Theta_{X|\mathbf{U}}\prod_{i}\pi_{X}(U_{i})\prod_{j}\lambda_{Y_{j}}(X)$$
$$\lambda_{X}(U_{i}) = \eta \sum_{X\mathbf{U}\setminus\{U_{i}\}}\lambda_{\mathbf{e}}(X)\Theta_{X|\mathbf{U}}\prod_{k\neq i}\pi_{X}(U_{k})\prod_{j}\lambda_{Y_{j}}(X)$$
$$\pi_{Y_{j}}(X) = \eta \sum_{\mathbf{U}}\lambda_{\mathbf{e}}(X)\Theta_{X|\mathbf{U}}\prod_{i}\pi_{X}(U_{i})\prod_{k\neq j}\lambda_{Y_{k}}(X)$$

 η a constant that normalizes a factor to sum to one (to simplify the notation, we will refrain from distinguishing between constants η that normalize different factors).

伺下 イヨト イヨト

Iterative Belief Propagation

Iterative Belief Propagation (IBP)

 $IBP(\mathcal{N}, \mathbf{e})$

input:

 ${f N}$: a Bayesian network inducing distribution \Pr

e: an instantiation of some variables in network ${\mathfrak N}$

output: approximate marginals, BEL(XU), of Pr(XU|e) for each family XU in N.

main:

 $\begin{array}{ll} 1: t \leftarrow 0\\ 2: \text{ initializ} \end{array}$ initialize all messages π^0 , λ^0 (uniformly) 3: while messages have not converged do 4: 5: 6: 7: $t \leftarrow t + 1$ for each node X with parents U do for each parent U_i do $\lambda_X^t(U_i) = \eta \sum_{X \cup \{U_i\}} \lambda_e(X) \Theta_{X \mid \bigcup} \prod_{k \neq i} \pi_X^{t-1}(U_k) \prod_i \lambda_{Y_i}^{t-1}(X)$ 8: 9: end for for each child Y; do 10: $\pi_{Y_i}^t(X) = \eta \sum_{\mathbf{U}} \lambda_{\mathbf{e}}(X) \Theta_{X|\mathbf{U}} \prod_i \pi_X^{t-1}(U_i) \prod_{k \neq j} \lambda_{Y_i}^{t-1}(X)$ 11: 12: 13: end for end for end while 14: return $BEL(XU) = \eta \lambda_e(X)\Theta_{X|U} \prod_i \pi_X^t(U_i) \prod_j \lambda_{Y_i}^t(X)$ for families XU

When IBP converges, the values of its messages at convergence are called a fixed point.

In general, IBP may have multiple fixed points on a given network.

《曰》 《圖》 《臣》 《臣》

Iterative Belief Propagation

- How fast will IBP converge, or should we even expect it to converge?
- One can identify networks where the messages computed by IBP can oscillate, and if left to run without limit, IBP could loop forever.
- The convergence rate of IBP can depend crucially on the order in which messages are propagated, which is known as a message schedule.
- IBP is said to use a parallel schedule, since we wait until all messages for an iteration are computed before they are propagated (in parallel) in the following iteration.
- One can adopt a sequential schedule where messages are propagated as soon as they are computed.
- All schedules have the same fixed points (if IBP starts at a fixed point, it stays at a fixed point, independent of the schedule).

イロト イヨト イヨト イヨト

Iterative Belief Propagation

For a concrete example of sequential schedules, we compute messages in the following order:

$$\pi_B(A), \pi_C(A), \pi_D(B), \pi_D(C), \pi_E(C), \lambda_D(B), \lambda_B(A), \lambda_E(C), \lambda_D(C), \lambda_C(A).$$

- When we are ready to compute the message π_E(C) using messages π_C(A) and λ_D(C), we can use the most up-to-date ones: π_C(A) from the current iteration and λ_D(C) from the previous iteration.
- Information available at node A is able to propagate to E, two steps away, in the same iteration.
- Computing messages in parallel, this same information would have taken two iterations to reach E.

We will provide a semantics for Algorithm IBP showing how it can be viewed as searching for an approximate probability distribution Pr' that attempts to minimize the Kullback-Leibler divergence with the distribution Pr induced by the given Bayesian network.

The Kullback-Leibler divergence (KL–divergence)

$$\mathrm{KL}(\mathrm{Pr}'(\boldsymbol{X}|\boldsymbol{e}),\mathrm{Pr}(\boldsymbol{X}|\boldsymbol{e})) = \sum_{\boldsymbol{x}} \mathrm{Pr}'(\boldsymbol{x}|\boldsymbol{e}) \log \frac{\mathrm{Pr}'(\boldsymbol{x}|\boldsymbol{e})}{\mathrm{Pr}(\boldsymbol{x}|\boldsymbol{e})}$$

- $\mathrm{KL}(\mathrm{Pr}'(\boldsymbol{X}|\boldsymbol{e}),\mathrm{Pr}(\boldsymbol{X}|\boldsymbol{e}))$ is non-negative
- equal to zero if and only if $\Pr'(\mathbf{X}|\mathbf{e})$ and $\Pr(\mathbf{X}|\mathbf{e})$ are equivalent.

The approximations computed by IBP are based on assuming an approximate distribution $Pr'(\mathbf{X})$ that factors as follows:

$$\Pr'(\mathbf{X}|\mathbf{e}) = \prod_{X\mathbf{U}} \frac{\Pr'(X\mathbf{U}|\mathbf{e})}{\prod_{U \in \mathbf{U}} \Pr'(U|\mathbf{e})}$$

- This choice of $\Pr'(\bm{X}|\bm{e})$ is expressive enough to describe distributions $\Pr(\bm{X}|\bm{e})$ induced by polytree networks $\mathcal N$
- In the case where N is not a polytree, then we are simply trying to fit Pr(X|e) into an approximation Pr'(X|e) as if it were generated by a polytree network.
- The entropy of distribution $Pr'(\mathbf{X}|\mathbf{e})$ can be expressed as:

$$\mathrm{ENT}'(\mathbf{X}|\mathbf{e}) = -\sum_{x\mathbf{U}}\sum_{x\mathbf{u}} \mathrm{Pr}'(x\mathbf{u}|\mathbf{e})\log\frac{\mathrm{Pr}'(x\mathbf{u}|\mathbf{e})}{\prod_{u\sim \mathbf{u}} \mathrm{Pr}'(u|\mathbf{e})}$$

・ 同下 ・ ヨト ・ ヨト

- IBP fixed points are stationary points of the KL-divergence: they may only be local minima, or they may not be minima.
- When IBP performs well, it will often have fixed points that are indeed minima of the KL-divergence.
- For problems where IBP does not behave as well, we will next seek approximations Pr' whose factorizations are more expressive than that of the polytree-based factorization.

・ 同 ト ・ ヨ ト ・ ヨ ト