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Outline

We discuss in this chapter a class of approximate inference
algorithms which are based on belief propagation. These
algorithms provide a full spectrum of approximations, allowing one
to trade-off approximation quality with computational resources.
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The Belief Propagation Algorithm
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The Belief Propagation Algorithm

@ A node i in the jointree, which corresponds to variable X in the polytree,
will have its cluster as C; = XU, where U are the parents of X in the polytree.

@ An undirected edge i—j in the jointree, which corresponds to edge X — Y in the polytree,
will have its separator as §;; = X.

Pr(XU,e) = \e(X)Oxu H mx(U;) H Ay, (X)
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The Belief Propagation Algorithm
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Messages propagated towards node D under evidence E =true.
We have three m-messages in this case:

A | 78(A) B | mp(B) C | m(9)
true .01 true .00199 true .001
false .99 false 99801 false .999

We also have two A-messages:

D | Ae(D) D | Ae(D)
true .9 true 1
false 8 false 1
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The Belief Propagation Algorithm

To compute the joint marginal for the family of variable D, we
simply evaluate:

Pr(BCD, e) = ©ppc - mp(B)mp(C) - Ae(D)AF(D)

leading to the following;:

B c D | Pr(BCD,e)
true  true  true | 1.7731 x 107°
true true false 5.9700 x 10~°
true false true 1.6103 x 10~3
true false false 5.9640 x 10>
false  true  true | 8.5330 x 10— %
false true false 1.4970 x 10~°
false  false  true | 8.9731 x 1073
false false false 2.9611 x 10~ 1

By summing all table entries, we find that Pr(e) ~ 0.3076.
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The Belief Propagation Algorithm
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We can also compute the joint marginal for variable C once we
compute the message passed from D to C:

C | Xp(©) © | Pr(C,e)
true 0.8700 true 0.0009
false 0.3071 false 0.3067

Note that we could have also computed the joint marginal for
variable C using the joint marginal for the family of D:
Pr(C,e) =) gp Pr(BCD,e).
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The Belief Propagation Algorithm

BEL(XU) denotes the conditional marginal Pr(XU|e):

BEL(XU) = @X|UH7TX(U HAY
/\x(U,') = n Z)\ eX\U Hﬂ'x Uk H/\y
XU\{U;} ki
v (X) = 7 Z)\ e)<|U1_[7TX HAY}((X

k#j

7 a constant that normalizes a factor to sum to one (to simplify
the notation, we will refrain from distinguishing between constants
1 that normalize different factors).
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Iterative Belief Propagation
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Iterative Belief Propagation (IBP)

1BP(N, e)

input:
N: a Bayesian network inducing distribution Pr
e: an instantiation of some variables in network N

output: approximate marginals, BEL(XU), of Pr(XU|e) for each family XU in N.
main:

l:t«o0

2: initialize all messages 7\'0, A0 (uniformly)

3: while messages have not converged do

4: tet+1

5: for each node X with parents U do

6: for each parent U; do

T A (U) =1 Xxun 1y;y Ae(X¥)Oxu T mi U T Aﬁ,]fl(x)
8: end for

9: for each child Y; do

10: 7wl (X) =1 Sy Ae(X¥)Oxu ITi (U Tligg Ay, (X)

11: end for

12: end for

13: end while

14: retum BEL(XU) = 1 Xe(X)Ox |y IT; 74 (U) IT; Ath(X) for families XU
When IBP converges, the values of its messages at convergence are called a fixed point.

In general, IBP may have multiple fixed points on a given network.
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Iterative Belief Propagation

@ How fast will IBP converge, or should we even expect it to converge?

@ One can identify networks where the messages computed by IBP can
oscillate, and if left to run without limit, IBP could loop forever.

@ The convergence rate of IBP can depend crucially on the order in which
messages are propagated, which is known as a message schedule.

@ IBP is said to use a parallel schedule, since we wait until all messages for
an iteration are computed before they are propagated (in parallel) in the
following iteration.

@ One can adopt a sequential schedule where messages are propagated as
soon as they are computed.

@ All schedules have the same fixed points (if IBP starts at a fixed point, it
stays at a fixed point, independent of the schedule).
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Iterative Belief Propagation

For a concrete example of sequential schedules, we compute messages in the
following order:

me(A), mc(A), mp(B), mp(C), 7e(C), An(B), As(A), Ae(C), Ap(C), Ac(A).

When we are ready to compute the message 7g(C) using messages ¢ (A) and Ap(C), we can use the
most up-to-date ones: 7 (A) from the current iteration and Ap(C) from the previous iteration.

Information available at node A is able to propagate to E, two steps away, in the same iteration.

Computing messages in parallel, this same information would have taken two iterations to reach E.
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The Semantics of IBP

We will provide a semantics for Algorithm IBP showing how it can
be viewed as searching for an approximate probability distribution
P1’ that attempts to minimize the Kullback-Leibler divergence with
the distribution Pr induced by the given Bayesian network.
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The Kullback-Leibler Divergence

The Kullback-Leibler divergence (KL—divergence)

KL(Pr'(X|e), Pr(Xe)) ZPr (xle) log ((X"e))

e KL(Pr'(X|e),Pr(X]|e)) is non-negative
e equal to zero if and only if Pr'(X|e) and Pr(X|e) are
equivalent.
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Optimizing the KL-Divergence

The approximations computed by IBP are based on assuming an
approximate distribution Pr/(X) that factors as follows:

YiXle) = Pr'(XUle)
Xle) =Ll 7 e

@ This choice of Pr/(X|e) is expressive enough to describe distributions
Pr(Xle) induced by polytree networks N

@ In the case where N is not a polytree, then we are simply trying to fit

Pr(X|e) into an approximation Pr’(X|e) as if it were generated by a
polytree network.

@ The entropy of distribution Pr/(X|e) can be expressed as:

ENT'(X|e) = — > > Pr'(xule) |ogHPr/($|e)

!
XU xu u~u Pr (u|e)
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Optimizing the KL-Divergence

@ IBP fixed points are stationary points of the KL—divergence:
they may only be local minima, or they may not be minima.

@ When IBP performs well, it will often have fixed points that
are indeed minima of the KL—divergence.

@ For problems where IBP does not behave as well, we will next

seek approximations Pr’ whose factorizations are more
expressive than that of the polytree-based factorization.
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