
Chapter 14: Approximate Inference by Belief
Propagation

Adnan Darwiche1

1Lecture slides for Modeling and Reasoning with Bayesian Networks, Adnan
Darwiche, Cambridge University Press, 2009.

Adnan Darwiche Chapter 14: Approximate Inference by Belief Propagation



Outline

We discuss in this chapter a class of approximate inference
algorithms which are based on belief propagation. These
algorithms provide a full spectrum of approximations, allowing one
to trade-off approximation quality with computational resources.
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The Belief Propagation Algorithm
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A ΘA
true .01
false .99

A B ΘB|A
true true .100
true false .900
false true .001
false false .999

C ΘC
true .001
false .999

B C D ΘD|BC
true true true .99
true true false .01
true false true .90
true false false .10
false true true .95
false true false .05
false false true .01
false false false .99

D E ΘE|D
true true .9
true false .1
false true .3
false false .7

D F ΘF|D
true true .2
true false .8
false true .1
false false .9

Adnan Darwiche Chapter 14: Approximate Inference by Belief Propagation



The Belief Propagation Algorithm
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A node i in the jointree, which corresponds to variable X in the polytree,
will have its cluster as Ci = XU, where U are the parents of X in the polytree.

An undirected edge i−j in the jointree, which corresponds to edge X → Y in the polytree,
will have its separator as Sij = X .

Pr(XU, e) = λe(X )ΘX |U
∏

i

πX (Ui )
∏

j

λYj (X )
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The Belief Propagation Algorithm
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Messages propagated towards node D under evidence E =true.
We have three π-messages in this case:

A πB (A)
true .01
false .99

B πD (B)
true .00199
false .99801

C πD (C)
true .001
false .999

We also have two λ-messages:

D λE (D)
true .9
false .3

D λF (D)
true 1
false 1
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The Belief Propagation Algorithm

To compute the joint marginal for the family of variable D, we
simply evaluate:

Pr(BCD, e) = ΘD|BC · πD(B)πD(C ) · λE (D)λF (D)

leading to the following:

B C D Pr(BCD, e)

true true true 1.7731× 10−6

true true false 5.9700× 10−9

true false true 1.6103× 10−3

true false false 5.9640× 10−5

false true true 8.5330× 10−4

false true false 1.4970× 10−5

false false true 8.9731× 10−3

false false false 2.9611× 10−1

By summing all table entries, we find that Pr(e) ≈ 0.3076.
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The Belief Propagation Algorithm
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We can also compute the joint marginal for variable C once we
compute the message passed from D to C :

C λD (C)
true 0.8700
false 0.3071

C Pr(C , e)
true 0.0009
false 0.3067

Note that we could have also computed the joint marginal for
variable C using the joint marginal for the family of D:
Pr(C , e) =

∑
BD Pr(BCD, e).
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The Belief Propagation Algorithm

BEL(XU) denotes the conditional marginal Pr(XU|e):

BEL(XU) = η λe(X )ΘX |U
∏

i

πX (Ui )
∏

j

λYj (X )

λX (Ui ) = η
∑

XU\{Ui}
λe(X )ΘX |U

∏

k 6=i

πX (Uk)
∏

j

λYj (X )

πYj (X ) = η
∑

U

λe(X )ΘX |U
∏

i

πX (Ui )
∏

k 6=j

λYk
(X )

η a constant that normalizes a factor to sum to one (to simplify
the notation, we will refrain from distinguishing between constants
η that normalize different factors).
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Iterative Belief Propagation
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Iterative Belief Propagation (IBP)

IBP(N, e)
input:

N: a Bayesian network inducing distribution Pr
e: an instantiation of some variables in network N

output: approximate marginals, BEL(XU), of Pr(XU|e) for each family XU in N.

main:

1: t ← 0
2: initialize all messages π0, λ0 (uniformly)

3: while messages have not converged do

4: t ← t + 1
5: for each node X with parents U do

6: for each parent Ui do

7: λt
X (Ui ) = η

P
XU\{Ui} λe(X )ΘX|U

Q
k 6=i π

t−1
X

(Uk )
Q

j λ
t−1
Yj

(X )

8: end for
9: for each child Yj do

10: πt
Yj

(X ) = η
P

U λe(X )ΘX|U
Q

i π
t−1
X

(Ui )
Q

k 6=j λ
t−1
Yk

(X )

11: end for
12: end for
13: end while
14: return BEL(XU) = η λe(X )ΘX|U

Q
i π

t
X (Ui )

Q
j λ

t
Yj

(X ) for families XU

When IBP converges, the values of its messages at convergence are called a fixed point.

In general, IBP may have multiple fixed points on a given network.
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Iterative Belief Propagation

How fast will IBP converge, or should we even expect it to converge?

One can identify networks where the messages computed by IBP can
oscillate, and if left to run without limit, IBP could loop forever.

The convergence rate of IBP can depend crucially on the order in which
messages are propagated, which is known as a message schedule.

IBP is said to use a parallel schedule, since we wait until all messages for
an iteration are computed before they are propagated (in parallel) in the
following iteration.

One can adopt a sequential schedule where messages are propagated as
soon as they are computed.

All schedules have the same fixed points (if IBP starts at a fixed point, it
stays at a fixed point, independent of the schedule).
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Iterative Belief Propagation
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For a concrete example of sequential schedules, we compute messages in the
following order:

πB(A), πC (A), πD(B), πD(C), πE (C), λD(B), λB(A), λE (C), λD(C), λC (A).

When we are ready to compute the message πE (C) using messages πC (A) and λD (C), we can use the
most up-to-date ones: πC (A) from the current iteration and λD (C) from the previous iteration.

Information available at node A is able to propagate to E , two steps away, in the same iteration.

Computing messages in parallel, this same information would have taken two iterations to reach E .
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The Semantics of IBP

We will provide a semantics for Algorithm IBP showing how it can
be viewed as searching for an approximate probability distribution
Pr′ that attempts to minimize the Kullback-Leibler divergence with
the distribution Pr induced by the given Bayesian network.

Adnan Darwiche Chapter 14: Approximate Inference by Belief Propagation



The Kullback-Leibler Divergence

The Kullback-Leibler divergence (KL–divergence)

KL(Pr′(X|e),Pr(X|e)) =
∑

x

Pr′(x|e) log
Pr′(x|e)

Pr(x|e)

KL(Pr′(X|e),Pr(X|e)) is non-negative

equal to zero if and only if Pr′(X|e) and Pr(X|e) are
equivalent.
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Optimizing the KL-Divergence

The approximations computed by IBP are based on assuming an
approximate distribution Pr′(X) that factors as follows:

Pr′(X|e) =
∏

XU

Pr′(XU|e)∏
U∈U Pr′(U|e)

This choice of Pr′(X|e) is expressive enough to describe distributions
Pr(X|e) induced by polytree networks N

In the case where N is not a polytree, then we are simply trying to fit
Pr(X|e) into an approximation Pr′(X|e) as if it were generated by a
polytree network.

The entropy of distribution Pr′(X|e) can be expressed as:

ENT′(X|e) = −
X
XU

X
xu

Pr′(xu|e) log
Pr′(xu|e)Q
u∼u Pr

′(u|e)
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Optimizing the KL-Divergence

IBP fixed points are stationary points of the KL–divergence:
they may only be local minima, or they may not be minima.

When IBP performs well, it will often have fixed points that
are indeed minima of the KL–divergence.

For problems where IBP does not behave as well, we will next
seek approximations Pr′ whose factorizations are more
expressive than that of the polytree-based factorization.
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