Inference by Conditioning (Chapter 8)

#### Adnan Darwiche Computer Science Department UCLA

## **Cutset Conditioning**



## **Cutset Conditioning**



condition on enough nodes to get a polytree

time complexity: O(n c<sup>S</sup>)

#### **Recursive Conditioning**

condition to decompose







Fuel Line

Distributor

Spark Plugs



LP \* RP



LP \* RP

#### **Causal Network**



#### **Causal Network**







Leak

Gas

Gas Gauge

Fuel Line

Distribu

Spark Plug



#### LP \* RP



#### LP \* RP + LP \* RP



LP \* RP + LP \* RP

- Decomposition and Case Analysis can answer any query
- Non-Deterministic!































## **Computational Complexity**

• Given



O(n c<sup>wlog n</sup>

 $O(n c^{S})$ 

- DAG with **n** nodes
- elimination order of width w
- Can construct a dtree in O(n log n) time:
  Height O(log n)
  - cutset width <= w+1</pre>
  - a-cutset width O(w log n)
- Time complexity:
- Cutset Conditioning:

|   | Network  | Effective | Elimination- | Loop-Cutset | A-Cutset |
|---|----------|-----------|--------------|-------------|----------|
|   |          | Network   | Order Width  | Width       | Width    |
|   |          | Size      |              |             |          |
| 1 | Water    | 59.0      | 21.3         | 29.5        | 32.3     |
| 2 | Midlew   | 108.4     | 19.7         | 39.3        | 45.9     |
| 3 | Barley   | 138.0     | 21.8         | 57.3        | 51.1     |
| 4 | Diabetes | 1349.1    | 19.2         | 557.2       | 77.9     |
| 5 | Link     | 922.7     | 28.0         | 347.0       | 70.7     |
| 6 | Pigs     | 699.0     | 16.4         | 144.2       | 38.0     |
| 7 | Munin1   | 410.3     | 26.4         | 122.6       | 51.7     |
| 8 | Munin2   | 2202.7    | 20.0         | 495.9       | 54.6     |
| 9 | Munin3   | 2293.4    | 16.3         | 454.2       | 51.1     |
| 0 | Munin4   | 2313.4    | 19.7         | 521.5       | 51.9     |









#### **Relation to Jointrees**



Time: O(n c<sup>w</sup>) Space: O(n c<sup>w</sup>)





Context(N)=A-Cutset(N)&Vars(N)







#### **Decomposition Models**

#### width-preserving transformations



# **Any-Space Inference**

#### **Time-Space Tradeoffs**



 $rc(T)=cutset^{\#}(T^{p})[cf(T^{p})context^{\#}(T^{p})+(1-cf(T^{p}))rc(T^{p})]$ 

#### Conclusion

- Alternative conditioning paradigm

   condition to decompose
  - dtrees: decomposition policy
- Any-space inference:
   O(n) ---- O(n c<sup>w</sup>)
   O(n c<sup>wlog n</sup>) ---- O(n c<sup>w</sup>)

#### Conclusion

- Three decomposition models:
  - elimination order (variable elimination)
  - jointree (clustering)
  - dtree (conditioning)
- Quality measured by width
- Poly-time, width-preserving transformations