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Outline

We will discuss in this chapter a particular approach to learning
Bayesian networks from data, known as the Bayesian approach,
which is marked by its ability to integrate prior knowledge into the
learning process, and to reduce learning to a problem of inference.
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A network structure with a complete data set.
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Introduction

Health Aware 

(H)

Smokes 

(S)

Exercises 

(E)

Five parameter sets

θH = (θh, θh̄)
θS |h = (θs|h, θs̄|h)
θS |h̄ = (θs|h̄, θs̄|h̄)
θE |h = (θe|h, θē|h)
θE |h̄ = (θe|h̄, θē|h̄)
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Introduction

Health Aware 

(H)

Smokes 

(S)

Exercises 

(E)

Prior knowledge

θS|h = (.1, .9)

θE |h = (.8, .2)

θH ∈ {(.75, .25), (.90, .10)}
θS|h̄ ∈ {(.25, .75), (.50, .50)}
θE |h̄ ∈ {(.50, .50), (.75, .25)}

where each of the two values are

considered equally likely.
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Meta network: variables θH , θS|h̄, θE |h̄ represent the possible values of unknown

network parameters, where the CPTs of these variables encode our prior

knowledge about these parameters. Moreover, variables Hi , Si and Ei represent

the values that variables H,S and E take in case i of the data set, allowing one

to assert the data set as evidence on the given network.
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Introduction

By explicitly encoding prior knowledge about network parameters,
and by treating data as evidence, the Bayesian approach can now
reduce the process of learning to a process of computing posterior
distributions:

P(θH , θS|h̄, θE |h̄|D),

where P is the distribution induced by the meta network, and D is
the evidence entailed by the data set.
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One can identify parameter estimates that have the highest
probability:

argmax
θH ,θS|h̄θE |h̄

P(θH , θS |h̄θE |h̄|D)

These are known as MAP estimates, for maximum a posteriori
estimates.
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Introduction

The Bayesian approach does not commit to a single value of
network parameters θ as it can work with a distribution over the
possible values of these parameters, P(θ|D).

The Bayesian approach can compute the expected value of a given
query with respect to the distribution over network parameters.
For example, the expected probability of observing a person that
both smokes and exercises can be computed as follows:∑

θ

Prθ(s, e)P(θ|D),

where Prθ(.) is the distribution induced by the base network and
parametrization θ.
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Outline

Define the notion of a meta network formally.

Describe a particular class of meta networks that is commonly
assumed in Bayesian learning.

Parameter estimation while assuming that each parameter has
a finite number of possible values.

Parameter estimation for the continuous case.

Learning network structure.
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Parameter Sets

Let X be a variable with values x1, . . . , xk , and let U be its parents

A parameter set for variable X and parent instantiation u, denoted
by θX |u, is the set of network parameters (θx1|u, . . . , θxk |u). A
parameter set that admits a finite number of values is said to be
discrete, otherwise it is said to be continuous.

The parameter set θS |h̄ admits the following two values:

θS |h̄ ∈ {(.25, .75), (.50, .50)}

This parameter set is therefore discrete, and each of its values
corresponds to an assignment of probabilities to the set of
co-varying parameters (θs|h̄, θs̄|h̄). Hence, if θS |h̄ = (.25, .75), then
θs|h̄ = .25 and θs̄|h̄ = .75.

Adnan Darwiche Chapter 18 Learning: The Bayesian Approach



Parameter Sets

To further spell out our notational conventions for parameter sets,
consider the following expression:∑

θS|h̄

θs|h̄θs̄|h̄

That is, we are summing over all possible values of the parameter
set θS|h̄, and then multiplying the values of parameters
corresponding to each element of the summand. The above
expression will therefore evaluate to:

(.25)(.75) + (.50)(.50)

We will write an number of expressions later that resemble the
form given above.
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Meta Networks

Let G be a network structure

A meta network of size N for structure G is constructed using N
instances of structure G , with variable X in G appearing as Xi in
the ith instance of G . Moreover, for every variable X in G and its
parent instantiation u, the meta network contains the parameter
set θX |u and corresponding edges θX |u → X1, . . ., θX |u → XN
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Meta Networks
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A meta network for the structure S ← H → E
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Meta Networks

We will distinguish between the base network, which is a classical
Bayesian network, and the meta network.

We will also use θ to denote the set of all parameters for the base
network, and call it a parametrization. Equivalently, θ will
represent the collection of parameter sets in the meta network.

The distribution induced by a base network and parametrization θ
will be denoted by Prθ(.) and called a base distribution.

The distribution induced by a meta network will be denoted by
P(.) and called a meta distribution.
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Prior Knowledge

Prior knowledge on network parameters is encoded in the meta
network using the CPTs of parameter sets.

For example, we have assumed in that the two values of parameter
set θS|h̄ are equally likely. Hence, the CPT of this parameter set is
as follows:

θS |h̄ = (θs|h̄, θs̄|h̄) P(θS|h̄)

(.25, .75) 50%
(.50, .50) 50%

These CPTs are then given as input to the learning process and
lead to a major distinction with the ML approach to learning.
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Prior Knowledge

The CPTs of other variables in a meta network (i.e., ones that do
not correspond to parameter sets) are determined by the intended
semantics of such networks.

Consider a variable X in the base network having parents U, and
let X1, . . . ,Xn be the instances of X and U1, . . . ,Un be the
instances of U in the meta network. All instances of X will have
the same CPT in the meta network:

P(Xi |ui , θX |u1 , . . . , θX |um) = θX |uj , where uj = ui

Example:

P(Si |Hi =h, θS|h, θS |h̄) = θS |h

P(Si |Hi = h̄, θS|h, θS |h̄) = θS |h̄
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Data as Evidence

Case H S E

1 h s̄ e
2 h s̄ ē
3 h̄ s ē

The data set can be viewed as the following variable instantiation:

D = (H1 =h)∧(S1 = s̄)∧(E1 =e)∧. . .∧(H3 = h̄)∧(S3 =s)∧(E3 = ē)

One can assert this data set as evidence on the meta network, and
then compute the corresponding posterior distribution on network
parameters.
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Data as Evidence

We initially have the following distribution on parameter sets:

P(θH , θS|h, θS|h̄, θE |h, θE |h̄) = P(θH)P(θS |h)P(θS|h̄)P(θE |h)P(θE |h̄)

Note how the prior distribution could be decomposed in this case,
which is possible for any meta network given by (since parameter
sets are root nodes and are therefore d-separated).

This decomposition holds for the posterior distribution as well,
given that the data set is complete:

P(θH , θS|h, θS |h̄, θE |h, θE |h̄|D)

= P(θH |D)P(θS|h|D)P(θS |h̄|D)P(θE |h|D)P(θE |h̄|D)
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Data as Evidence
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(a) meta network (b) pruned meta network

Pruning edges of a meta network based on a complete data set.

Removed edges are either outgoing from observed variables or

representing superfluous dependencies.
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Parameter Independence

Consider a meta network and let Σ1 and Σ2 each contain a
collection of parameter sets, Σ1 ∩ Σ2 = ∅
The following conditions, known as parameter independence, are
then guaranteed to hold:

Σ1 and Σ2 are independent, P(Σ1,Σ2) = P(Σ1)P(Σ2)

Σ1 and Σ2 are independent given any complete data set D,
P(Σ1,Σ2|D) = P(Σ1|D)P(Σ2|D)
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Parameter Independence
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Parameter independence is sometimes classified as either global or
local. Global parameter independence refers to the independence
between two parameter sets, θX |u and θY |v, corresponding to
distinct variables X 6= Y . Local parameter independence refers to
the independence between parameter sets, θX |u and θX |u? , u 6= u?,
corresponding to the same variable X
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Learning with Discrete Parameter Sets

Health Aware 

(H)

Smokes 

(S)

Exercises 

(E)

Prior knowledge

θS|h = (.1, .9)

θE |h = (.8, .2)

θH ∈ {(.75, .25), (.90, .10)}
θS|h̄ ∈ {(.25, .75), (.50, .50)}
θE |h̄ ∈ {(.50, .50), (.75, .25)}

where each of the two values are

considered equally likely.
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Learning with Discrete Parameter Sets

Suppose now that our goal is to compute the probability of
observing a smoker who exercises regularly, that is, s, e.

According to the ML approach, we first need to find the ML
estimates θml based on the given data, and then use them to
compute this probability.

Among the eight possible parameterizations in this case, the one
with maximum likelihood is:

θml : θH = (.75, .25), θS |h̄ = (.25, .75), θE |h̄ = (.50, .50)

If we plug in these parameter values in the base network:

Prθml (s, e) ≈ 9.13%
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Learning with Discrete Parameter Sets

The Bayesian approach, however, treats this problem differently.

It views the data set D as evidence on variables
H1, S1,E1,. . . ,H5, S5,E5 in the meta network.

It then computes the posterior on variables S6 and E6 by
performing inference on this meta network, leading to:

P(S6 =s,E6 =e|D) ≈ 11.06%
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Learning with Discrete Parameter Sets

The Bayesian approach is therefore not estimating any parameters
as is done in the ML approach.

Given discrete parameter sets, and a data set D of size N, we have

P(αN+1|D) =
∑
θ

Prθ(α)P(θ|D).

Here, event αN+1 is obtained from α by replacing every occurrence
of variable X by its instance XN+1.
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Learning with Discrete Parameter Sets

For example, if α is S =s,E =e, then α6 is S6 =s,E6 =e We then
have:

P(S6 =s,E6 =e|D) =
∑
θ

Prθ(S =s,E =e)P(θ|D).

The Bayesian approach is therefore considering every possible
parametrization θ, computing the probability Prθ(S =s,E =e)
using the base network, and then taking a weighted average of the
computed probabilities. In other words, the Bayesian approach is
computing the expected value of Prθ(S =s,E =e).
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Learning with Discrete Parameter Sets

If the data set is complete, one can compute Bayesian estimates by
performing inference on the base network.

Let θX |u be a discrete parameter set

The Bayesian estimate for parameter θx |u given data set D is
defined as follows:

θbe
x |u

def
=

∑
θX |u

θx |u · P(θX |u|D)

The set of all Bayesian estimates θbe
x |u will be denoted by θbe .
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Learning with Discrete Parameter Sets

Given discrete parameter sets, and a complete data set D of size
N, we have

P(αN+1|D) = Prθbe (α),

where θbe are the Bayesian estimates given data set D

P(αN+1|D) is an expectation of the probability Prθ(α). Hence, we
can compute this expectation by performing inference on a base
network that is parameterized by the Bayesian estimates.
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Computing Bayesian Estimates

Bayesian estimates are easy to compute.

Let θX |u be a discrete parameter set, and let D be a complete data
set. We then have

P(θX |u|D) = η P(θX |u)
∏
x

[
θx |u

]D#(xu)
,

where η is a normalizing constant.
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Computing Bayesian Estimates

Consider now the parameter set θE |h̄ with values

{(.50, .50), (.75, .25)} and a uniform prior.

Case H S E

1 F F T
2 T F T
3 T F T
4 F F F
5 F T F

We then have the following posterior:

P(θE |h̄ = (.50, .50)|D) = η × .50×
[
.50
]1[

.50
]2

P(θE |h̄ = (.75, .25)|D) = η × .50×
[
.75
]1[

.25
]2

Normalizing:

P(θE |h̄ = (.50, .50)|D) ≈ 72.73%

P(θE |h̄ = (.75, .25)|D) ≈ 27.27%
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Computing Bayesian Estimates

Given:

P(θE |h̄ = (.50, .50)|D) ≈ 72.73%

P(θE |h̄ = (.75, .25)|D) ≈ 27.27%

We can now compute the Bayesian estimate for every parameter by
taking its expectation according to the above posterior:

θbe
e|h̄ = .50× 72.73% + .75× 27.27% ≈ .57

θbe
ē|h̄ = .50× 72.73% + .25× 27.27% ≈ .43

The Bayesian estimate for parameter set θE |h̄ = (θe|h̄, θē|h̄) is then
(.57, .43) in this case.
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Closed Forms for Complete Data

Assuming here a base network with families XU and a complete
data set D of size N:

The prior probability of network parameters:

P(θ) =
∏
XU

∏
u

P(θX |u)

The posterior probability of network parameters:

P(θ|D) =
∏
XU

∏
u

P(θX |u|D)

The likelihood of network parameters:

P(D|θ) =
N∏

i=1

P(di |θ) =
N∏

i=1

Prθ(di )
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Closed Forms for Complete Data

Assuming here a base network with families XU and a complete
data set D of size N:

The marginal likelihood:2

P(D) =
N∏

i=1

P(di |d1, . . . ,di−1) =
N∏

i=1

Prθbe
i

(di ),

where θbe
i are the Bayesian estimates for data set d1, . . . ,di−1

2Since P(D|θ) is called the likelihood of parameters θ, the quantity P(D) is
called the marginal likelihood since it equals

P
θ P(D|θ)P(θ).
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Closed Forms for Complete Data

One can easily compute MAP estimates under complete data.

θma = argmax
θ

P(θ|D)

Given parameter independence, we then have:

θma
X |u = argmax

θX |u

P(θX |u|D)

Since,

P(θ|D) =
P(D|θ)P(θ)

P(D)
∝ P(D|θ)P(θ),

the only difference between MAP and ML parameters is in the prior
P(θ). If all network parameterizations are equally likely, that is,
P(θ) is a uniform distribution, MAP and ML parameters coincide:

argmax
θ

P(θ|D) = argmax
θ

P(D|θ).
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Learning with Continuous Parameter Sets

Assumed that the parameter set θS |h̄ has only two values (.25, .75)
and (.50, .50) since our prior knowledge precluded all other values
for network parameters (θs|h̄, θs̄|h̄).

If on the other hand we allow all possible values for these
parameters, the parameter set θS|h̄ will then be continuous (i.e.,
having an infinite number of values).

To apply Bayesian learning in this context, we need a method for
capturing prior knowledge on continuous parameter sets (CPTs are
only appropriate for discrete parameter sets).
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Dirichlet Priors

Consider the parameter set θH = (θh, θh̄) in and suppose that we
expect it will have the value (.75, .25), yet we are not ruling out
other values, such as (.90, .10) and (.40, .60)

Suppose further that our belief in other values will decrease as they
deviate more from the expected value (.75, .25)
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Dirichlet Priors

One way to specify this knowledge is using a Dirichlet distribution,
which requires two numbers ψh and ψh̄, called exponents, where

ψh

ψh + ψh̄

is the expected value of parameter θh and

ψh̄

ψh + ψh̄

is the expected value of parameter θh̄.

Exponents ψh = 7.5 and ψh̄ = 2.5 give expectation
( 7.5

7.5+2.5 ,
2.5

7.5+2.5 ) = (.75, .25)
Exponents ψh = 75 and ψh̄ = 25 give same expectation
There is an infinite number of exponents that one can use.
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Dirichlet Priors

The sum of these exponents, ψh + ψh̄, is interpreted as a measure
of confidence in the expectations they lead to.

This sum is called the equivalent sample size of the Dirichlet
distribution, where a larger equivalent sample size is interpreted as
providing more confidence in the corresponding expectations.

Think of the exponent ψh as the number of health-aware
individuals we have observed before having encountered the
current data set, and similarly for the exponent ψh̄.

Accordingly, the exponents (ψh =7.5, ψh̄ =2.5) and
(ψh =75, ψh̄ =25) can both be used to encode the belief that 75%
of the individuals are health-aware, yet the second set of exponents
imply a stronger belief as they are based on a larger sample.
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Dirichlet Priors

Consider now variable E and suppose that it takes three values:

e1: the individual does not exercise at all.

e2: the individual exercises but not regularly.

e3: the individual exercises regularly.

Suppose now that we wish to encode our prior knowledge about
the parameter set θE |h = (θe1|h, θe2|h, θe3|h). If we expect this set to
have the value (.10, .60, .30), we can then use the exponents:

ψe1|h =10, ψe2|h =60, ψe3|h =30

which lead to the expectations:

10

10 + 60 + 30
,

60

10 + 60 + 30
,

30

10 + 60 + 30
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Dirichlet Priors

A Dirichlet distribution for a continuous parameter set θX |u is
specified by a set of exponents, ψx |u ≥ 1.a The equivalent sample
size of the distribution is defined as:

ψX |u
def
=

∑
x

ψx |u.

The Dirichlet distribution has the following density:

ρ(θX |u)
def
= η

∏
x

[
θx |u

]ψx|u−1
,

where η is a normalizing constant:

η
def
=

Γ(ψX |u)∏
x Γ(ψx |u)

.

Here, Γ(.) is the Gamma function, which is an extension of the
factorial function to real numbers.b

aThe Dirichlet distribution can be defined for exponents 0 < ψx|u < 1, but
its behavior for these exponents will lead to mathematical complications that
we try to avoid here. For example, Equation ?? will not hold in this case.

bThe Gamma function is generally defined as Γ(a) =
R∞

0
xa−1e−xdx . We

have Γ(1) = 1 and Γ(a + 1) = aΓ(a), which means that Γ(a) = (a− 1)! when a
is an integer ≥ 1.
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Dirichlet Priors

The expected value of network parameter θx |u is given by:

Ex(θx |u) =
ψx |u

ψX |u

The variance of this parameter is given by:

Va
(
θx |u
)

=
Ex(θx |u)(1− Ex(θx |u))

ψX |u + 1

The larger the equivalent sample size, ψX |u, the smaller the
variance and, hence, the more confidence we have in the expected
values of network parameters.
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Dirichlet Priors

The mode of a parameter set is the value having the largest
density:

Md
(
θx |u
)

=
ψx |u − 1

ψX |u − |X |
,

where |X | is the number of values for variable X .

A Dirichlet distribution with two exponents is also known as the
Beta distribution.
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The Semantics of Continuous Parameter Sets
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θ

hE |
θ
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θ
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A meta network with discrete

parameter sets induces a

probability distribution, but a

meta network with continuous

parameter sets induces a density

function.

The density function specified by this meta network:

ρ(θH , θS|h̄, θE |h̄,H,S ,E )

= ρ(θH)ρ(θS |h̄)ρ(θE |h̄)P(H|θH)P(S |H, θS|h̄)P(E |H, θE |h̄)
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The Semantics of Continuous Parameter Sets

The semantics of a network with continuous variables is defined by the
chain rule, except that we now have a product of densities (for
continuous variables) and probabilities (for discrete variables).

Discrete variables are summed out. Continuous variables are integrated
over.

The marginal over parameter sets is a density given by:

ρ(θH , θS|h̄, θE |h̄) =
∑
h,s,e

ρ(θH , θS|h̄, θE |h̄,H =h,S =s,E =e)

The marginal over discrete variables is a distribution given by:3

P(H,S ,E ) =

∫ ∫ ∫
ρ(θH , θS|h̄, θE |h̄,H,S ,E )dθHdθS|h̄dθE |h̄

3Suppose that θX |u = (θx1|u, . . . , θxk |u). Integrating over a parameter set
θX |u is a shorthand notation for successively integrating over parameters

θx1|u, . . . , θxk−1|u, while fixing the value of θxk |u to 1−
Pk−1

i=1 θxi |u.
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The Semantics of Continuous Parameter Sets

The result is a probability only if all continuous variables are
integrated over; otherwise, the result is a density.

For example, the marginal over parameter set θS|h̄ is a density
given by:

ρ(θS |h̄) =

∫ ∫ [∑
h,s,e

ρ(θH , θS |h̄, θE |h̄,H =h,S =s,E =e)
]
dθHdθE |h̄
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The Semantics of Continuous Parameter Sets

Density behaves like probability as far as independence is
concerned.

For example, since the meta network satisfies parameter
independence, we have:

ρ(θH , θS |h̄, θE |h̄) = ρ(θH)ρ(θS |h̄)ρ(θE |h̄),

and

ρ(θH , θS |h̄, θE |h̄|D) = ρ(θH |D)ρ(θS|h̄|D)ρ(θE |h̄|D),

when the data set D is complete.
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The Semantics of Continuous Parameter Sets

Density also behaves like probability as far as conditioning is
concerned.

For example,

ρ(H|θH) =
ρ(θH ,H)

ρ(θH)

and

ρ(θH |H) =
ρ(θH ,H)

P(H)

Adnan Darwiche Chapter 18 Learning: The Bayesian Approach



Bayesian Learning

Main result for Bayesian learning with continuous parameter sets

Given continuous parameter sets, and a data set D of size N, we
have:a

P(αN+1|D) =

∫
Prθ(α)ρ(θ|D)dθ

aIntegrating over a parametrization θ is a shorthand notation for
successively integrating over each of its parameter sets.

The quantity P(αN+1|D) is an expectation of the probability
Prθ(α), which is defined with respect to the base network.
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Bayesian Learning

Let θX |u be a continuous parameter set

The Bayesian estimate for network parameter θx |u given data set
D is defined as follows:

θbe
x |u

def
=

∫
θx |u · ρ(θX |u|D)dθX |u
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Bayesian Learning

As in the discrete case, we can sometimes reduce inference on a
meta network to inference on a base network using the Bayesian
estimates θbe

Given continuous parameter sets, and a complete data set D of
size N, we have

P(αN+1|D) = Prθbe (α),

where θbe are the Bayesian estimates given data set D
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Computing Bayesian Estimates

The Bayesian estimates are at the heart of the Bayesian approach
to learning, when the data set is complete.

The computation of these estimates, however, hinges on an ability
to compute posterior marginals over parameter sets.

Consider a meta network where each parameter set θX |u has a prior
Dirichlet density ρ(θX |u) specified by exponents ψx |u

Let D be a complete data set. The posterior density ρ(θX |u|D) is
then a Dirichlet density, specified by the following exponents:

ψ′x |u = ψx |u + D#(xu)
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Computing Bayesian Estimates

Consider now the parameter set θS |h = (θs|h, θs̄|h) with a prior
density ρ(θS |h) specified by the exponents

ψs|h = 1 and ψs̄|h = 9

The prior expectation of parameter θs|h is then .1

Case H S E
1 F F T
2 T F T
3 T F T
4 F F F
5 F T F

The posterior density ρ(θS |h|D) is also Dirichlet, specified by the
exponents

ψ′s|h = 1 + 0 = 1 and ψ′s̄,h = 9 + 2 = 11

The posterior expectation of parameter θs|h is now 1/12
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Computing Bayesian Estimates

More generally, the posterior expectation of parameter θx |u given
complete data is given by:

θbe
x |u =

ψx |u + D#(xu)

ψX |u + D#(u)

where ψx |u are the exponents of the prior Dirichlet distribution and
ψX |u is its equivalent sample size. This is the Bayesian estimate in
the context of Dirichlet distributions.

The MAP estimate given complete data is:

θma
x |u =

ψx |u + D#(xu)− 1

ψX |u + D#(u)− |X |

In the above example, the MAP estimate for parameter θs|h is 0.
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Computing Bayesian Estimates

Let us now compare these estimates with the ML estimate given in
Chapter 17:

θml
x |u =

D#(xu)

D#(u)

Contrary to ML estimates, the Bayesian (and sometimes MAP)
estimates do not suffer from the problem of zero counts.

These estimates are well defined even when D#(u) = 0.

The Bayesian and MAP estimates will converge to the ML
estimates as the data set size tends to infinity, assuming the data
set is generated by a strictly positive distribution.
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Computing Bayesian Estimates

A Dirichlet distribution is called non-informative if all exponents are equal
to one: ψx|u = 1

The expectation of parameter θx|u is 1/|X | under this prior, leading to a
uniform distribution for variable X given any parent instantiation u

Under this prior, the Bayesian estimate given complete data is:

θbe
x|u =

1 + D#(xu)

|X |+ D#(u)

Moreover, the MAP estimate is (coincides with the ML estimate4)

θma
x|u =

D#(xu)

D#(u)

4
This equality is not implied by the fact that parameters θx|u have equal expectations. If all exponents are

equal to, say, 10, all parameters will have equal expectations, yet the MAP and ML estimates will not coincide.
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Closed Forms for Complete Data

Assuming a base network with families XU and a complete data
set D of size N:

The prior density of network parameters:

ρ(θ) =
∏
XU

∏
u

ρ(θX |u)

The posterior density of network parameters:

ρ(θ|D) =
∏
XU

∏
u

ρ(θX |u|D)

The likelihood of network parameters:

P(D|θ) =
N∏

i=1

Prθ(di )
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Closed Forms for Complete Data

The marginal likelihood:

P(D) =
∏
XU

∏
u

Γ(ψX |u)

Γ(ψX |u + D#(u))

∏
x

Γ(ψx |u + D#(xu))

Γ(ψx |u)

The proof of this closed form provides an alternative form that
does not use the Gamma function, but the above form, which may
seem surprising at first, is more commonly cited in the literature.
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