
Lecture 2: Functions

Raymond Tan
CS 61A - Summer 2024

An expression describes a computation and evaluates to
a value.

20 + 24

Types of Expressions

Primitive Expressions:

Call Expressions:

2 3.5 'hello!'

numbers strings booleans

add (2 , 3)
Operator Operand Operand

True

Call Expressions

Evaluation procedure for call expressions

1. Evaluate the operator

2. Evaluate the operands from left to right

3. Apply the operator (a function) to the
evaluated operands (arguments)

add (2 , 3)
Operator Operand Operand

Operators and operands are also expressions

So they also evaluate to values

Apply!

add(add(6, mul(4, 6)), mul(3, 5))

Operator Operand Operand

Nested Call Expressions

Evaluate operator Evaluate operands Apply!

add(add(6, mul(4, 6)), mul(3, 5))

add

1 2 3

add(6, mul(4, 6))

add 6 mul(4, 6)

mul 4 6

24

30
mul(3, 5)

15

mul 3 5

45

Expression Tree

Assignment Statements
In Python, we can bind expressions to variables.

Assignment Statements
In Python, we can bind expressions to variables.

x = 1 + 2

Assignment Statement

Assignment Statements
In Python, we can bind expressions to variables.

x = 1 + 2

Assignment Statement

Expression on the
rightBound to

the variable
on the left

Assignment Statements
In Python, we can bind expressions to variables.

x = 1 + 2

Assignment Statement

Expression on the
rightBound to

the variable
on the left

1 + 2 = x
Incorrect!

Assignment Statements – Example

Assignment Statements – Example

y still retains its
original value
after x has been
reassigned!

Demo: Assignment of Python builtin
functions

User Defined Functions
We can define our own functions using def statements!

User Defined Functions
We can define our own functions using def statements!

User Defined Functions
We can define our own functions using def statements!

def tells Python
we’re defining a
function

User Defined Functions
We can define our own functions using def statements!

def tells Python
we’re defining a
function

Doctests provide a
description of our
function and the
expected behavior

User Defined Functions
We can define our own functions using def statements!

def tells Python
we’re defining a
function

Doctests provide a
description of our
function and the
expected behavior

return statement
denotes what the
function is
outputting

User Defined Functions
We can define our own functions using def statements!

def tells Python
we’re defining a
function

Doctests provide a
description of our
function and the
expected behavior

return statement
denotes what the
function is
outputting A function’s signature is denoted as the name of the

function and the arguments it takes in.

Environment Diagrams

Visualizing Assignment
Names are bound to values in an environment

Final Value

Bindings

Name

Demo

Visualizing Assignment
Names are bound to values in an environment

Final Value

Bindings

Name

Demo

To execute an assignment statement:

1. Evaluate the expression to the right of =.

2. Bind the value of the expression to the name to the left of = in the current
environment.

Calling User Defined Functions
Procedure for calling/applying user-defined functions:

Calling User Defined Functions
Procedure for calling/applying user-defined functions:

1. Add a local frame, forming a new environment

Calling User Defined Functions
Procedure for calling/applying user-defined functions:

1. Add a local frame, forming a new environment
2. Bind the function’s formal parameters to its arguments in that frame

Calling User Defined Functions
Procedure for calling/applying user-defined functions:

1. Add a local frame, forming a new environment
2. Bind the function’s formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

Calling User Defined Functions
Procedure for calling/applying user-defined functions:

1. Add a local frame, forming a new environment
2. Bind the function’s formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

tutor.cs61a.org

Calling User Defined Functions
Procedure for calling/applying user-defined functions:

1. Add a local frame, forming a new environment
2. Bind the function’s formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

tutor.cs61a.org

Calling User Defined Functions
Procedure for calling/applying user-defined functions:

1. Add a local frame, forming a new environment
2. Bind the function’s formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

tutor.cs61a.org

The parent of a
function is the frame
in which we define
the function

Calling User Defined Functions
Procedure for calling/applying user-defined functions:

1. Add a local frame, forming a new environment
2. Bind the function’s formal parameters to its arguments in that frame
3. Execute the body of the function in that new environment

tutor.cs61a.org

*A function’s signature has
all the information needed
to create a local frame

The parent of a
function is the frame
in which we define
the function

*Except argument values

Break time!

What if we have variables with the same name in
different parts of our program?

What if we have variables with the same name in
different parts of our program?

Answer: 100

Looking Up Names in Environments
Every expression is evaluated in the context of an environment.

Looking Up Names in Environments
Every expression is evaluated in the context of an environment.

Our programs always begin with a global frame, and then new local
frames are created when we make a function call.

Looking Up Names in Environments
Every expression is evaluated in the context of an environment.

Our programs always begin with a global frame, and then new local
frames are created when we make a function call.

Most important rules for environment diagrams:

Looking Up Names in Environments
Every expression is evaluated in the context of an environment.

Our programs always begin with a global frame, and then new local
frames are created when we make a function call.

Most important rules for environment diagrams:

1. An environment is a sequence of frames.

Looking Up Names in Environments
Every expression is evaluated in the context of an environment.

Our programs always begin with a global frame, and then new local
frames are created when we make a function call.

Most important rules for environment diagrams:

1. An environment is a sequence of frames.
2. A name evaluates to the value bound to that name in the earliest

frame of the current environment in which that name is found

A sequence of frames

Global

f1

f2

.

.

Latest

Earliest

A sequence of frames

Global

f1

f2

.

.

A sequence is a first frame, and
then the rest of the sequence

Latest

Earliest

A sequence of frames

Global

f1

f2

.

.

A sequence is a first frame, and
then the rest of the sequence

Not every frame is part of the
same environment, though
each frame on the left is part
of the environment diagram

Latest

Earliest

A sequence of frames

Global

f1

f2

.

.

A sequence is a first frame, and
then the rest of the sequence

Not every frame is part of the
same environment, though
each frame on the left is part
of the environment diagram

f2 has a parent frame of
Global, and f1 has a parent
frame of Global

Latest

Earliest

A sequence of frames

Global

f1

f2

.

.

A sequence is a first frame, and
then the rest of the sequence

Not every frame is part of the
same environment, though
each frame on the left is part
of the environment diagram

f2 has a parent frame of
Global, and f1 has a parent
frame of Global

f2 and f1 are not
part of the same
environment

Earliest

Latest

Example #1

Example #1

Answer: 6

Example #2

Reminder: Rules for evaluating call expressions

Evaluation procedure for call expressions

1. Evaluate the operator

2. Evaluate the operands from left to right

3. Apply the operator (a function) to the
evaluated operands (arguments)

It is not until we finish the first two steps and get to the
third step that a new frame is opened, and operand values
are bound to the argument names!

Example #2

Answer: 9

Summary

● An expression is anything that evaluates to a value in Python
○ Primitive and call expressions

● Assignment statements bind names to values
● Call expression evaluation follows a distinct set of rules

○ Evaluate the operator, evaluate the operand, and apply the operator onto
the operands

● Environment diagrams allow us to visualize assignment
○ Use tutor.cs61a.org to try this out on your own programs!

● Each environment is a sequence of frames, and all frames in a
program make up an environment diagram

