6/30/24, 9:48 AM

CoMPoSING PRoGRAMS

Chapter 1
Hide contents

1.1 Getting Started

1.1.1 Programming in Python
1.1.2 Installing Python 3
1.1.3 Interactive Sessions
1.1.4 First Example

1.1.5 Errors

1.2 Elements of Programming

1.2.1 Expressions

1.2.2 Call Expressions

1.2.3 Importing Library Functions
1.2.4 Names and the
Environment

1.2.5 Evaluating Nested
Expressions

1.2.6 The Non-Pure Print
Function

1.3 Defining New Functions

1.3.1 Environments

1.3.2 Calling User-Defined
Functions

1.3.3 Example: Calling a User-
Defined Function

1.3.4 Local Names

1.3.5 Choosing Names

1.3.6 Functions as Abstractions
1.3.7 Operators

1.4 Designing Functions

1.4.1 Documentation
1.4.2 Default Argument Values

1.5 Control

1.5.1 Statements

1.5.2 Compound Statements
1.5.3 Defining Functions II: Local
Assignment

1.5.4 Conditional Statements
1.5.5 lteration

1.5.6 Testing

1.6 Higher-Order Functions

1.6.1 Functions as Arguments
1.6.2 Functions as General
Methods

1.6.3 Defining Functions IlI:
Nested Definitions

1.6.4 Functions as Returned
Values

1.6.5 Example: Newton's Method
1.6.6 Currying

1.6.7 Lambda Expressions

1.6.8 Abstractions and First-Class
Functions

1.6.9 Function Decorators

1.5 Control

TEXT PROJECTS TUTOR ABOUT

1.5 Control

The expressive power of the functions that we can define at this point is very limited, because we
have not introduced a way to make comparisons and to perform different operations depending on
the result of a comparison. Control statements will give us this ability. They are statements that
control the flow of a program's execution based on the results of logical comparisons.

Statements differ fundamentally from the expressions that we have studied so far. They have no
value. Instead of computing something, executing a control statement determines what the interpreter
should do next.

1.5.1 Statements

So far, we have primarily considered how to evaluate expressions. However, we have seen three
kinds of statements already: assignment, def, and return statements. These lines of Python code are
not themselves expressions, although they all contain expressions as components.

Rather than being evaluated, statements are executed. Each statement describes some change to
the interpreter state, and executing a statement applies that change. As we have seen for return and
assignment statements, executing statements can involve evaluating subexpressions contained
within them.

Expressions can also be executed as statements, in which case they are evaluated, but their value is
discarded. Executing a pure function has no effect, but executing a non-pure function can cause
effects as a consequence of function application.

Consider, for instance,

>>> def square(x):
mul(x, x) # Watch out! This call doesn't return a value.

This example is valid Python, but probably not what was intended. The body of the function consists
of an expression. An expression by itself is a valid statement, but the effect of the statement is that
the mul function is called, and the result is discarded. If you want to do something with the result of an
expression, you need to say so: you might store it with an assignment statement or return it with a
return statement:

>>> def square(x):
return mul(x, x)

Sometimes it does make sense to have a function whose body is an expression, when a non-pure
function like print is called.

>>> def print_square(x):
print(square(x))

At its highest level, the Python interpreter's job is to execute programs, composed of statements.
However, much of the interesting work of computation comes from evaluating expressions.
Statements govern the relationship among different expressions in a program and what happens to
their results.

1.5.2 Compound Statements

In general, Python code is a sequence of statements. A simple statement is a single line that doesn't
end in a colon. A compound statement is so called because it is composed of other statements
(simple and compound). Compound statements typically span multiple lines and start with a one-line
header ending in a colon, which identifies the type of statement. Together, a header and an indented
suite of statements is called a clause. A compound statement consists of one or more clauses:

<header>:
<statement>
<statement>

<separating header>:

<statement>
<statement>

We can understand the statements we have already introduced in these terms.

« Expressions, return statements, and assignment statements are simple statements.

https://www.composingprograms.com/pages/15-control.html 1/6



6/30/24, 9:48 AM

1.7 Recursive Functions

1.7.1 The Anatomy of Recursive
Functions

1.7.2 Mutual Recursion

1.7.3 Printing in Recursive
Functions

1.7.4 Tree Recursion

1.7.5 Example: Partitions

1.5 Control

* A def statement is a compound statement. The suite that follows the def header defines the
function body.

Specialized evaluation rules for each kind of header dictate when and if the statements in its suite are
executed. We say that the header controls its suite. For example, in the case of def statements, we
saw that the return expression is not evaluated immediately, but instead stored for later use when the
defined function is eventually called.

We can also understand multi-line programs now.

» To execute a sequence of statements, execute the first statement. If that statement does not
redirect control, then proceed to execute the rest of the sequence of statements, if any remain.

This definition exposes the essential structure of a recursively defined sequence: a sequence can be
decomposed into its first element and the rest of its elements. The "rest" of a sequence of statements
is itself a sequence of statements! Thus, we can recursively apply this execution rule. This view of
sequences as recursive data structures will appear again in later chapters.

The important consequence of this rule is that statements are executed in order, but later statements
may never be reached, because of redirected control.

Practical Guidance. When indenting a suite, all lines must be indented the same amount and in the
same way (use spaces, not tabs). Any variation in indentation will cause an error.

1.5.3 Defining Functions II: Local Assignment

Originally, we stated that the body of a user-defined function consisted only of a return statement with
a single return expression. In fact, functions can define a sequence of operations that extends beyond
a single expression.

Whenever a user-defined function is applied, the sequence of clauses in the suite of its definition is
executed in a local environment — an environment starting with a local frame created by calling that
function. A return statement redirects control: the process of function application terminates whenever
the first return statement is executed, and the value of the return expression is the returned value of
the function being applied.

Assignment statements can appear within a function body. For instance, this function returns the
absolute difference between two quantities as a percentage of the first, using a two-step calculation:

def percent_difference(x, y): Global /_)'Func percent_difference(x, y

1
2 difference = abs(x-y) percent_difference
3 return 100 * difference / x result |25.0
. 4 result = percent_difference(40, 50)
Edit code in Online Python Tutor percent_difference
D X |40

y |50

End | Forward > I

difference |10

line that has just executed
Return

i 25.0
> next line to execute value

The effect of an assignment statement is to bind a name to a value in the first frame of the current
environment. As a consequence, assignment statements within a function body cannot affect the
global frame. The fact that functions can only manipulate their local environment is critical to creating
modular programs, in which pure functions interact only via the values they take and return.

Of course, the percent_difference function could be written as a single expression, as shown below,
but the return expression is more complex.

>>> def percent_difference(x, y):

return 100 * abs(x-y) / x
>>> percent_difference(40, 50)
25.0

So far, local assignment hasn't increased the expressive power of our function definitions. It will do

so, when combined with other control statements. In addition, local assignment also plays a critical
role in clarifying the meaning of complex expressions by assigning names to intermediate quantities.

1.5.4 Conditional Statements

Video: Show Hide

Python has a built-in function for computing absolute values.

https://www.composingprograms.com/pages/15-control.html

2/6



6/30/24, 9:48 AM

1.5 Control

>>> abs(-2)
2

We would like to be able to implement such a function ourselves, but we have no obvious way to
define a function that has a comparison and a choice. We would like to express that if x is positive,
abs(x) returns x. Furthermore, if x is 0, abs(x) returns 0. Otherwise, abs(x) returns -x. In Python, we
can express this choice with a conditional statement.

def absolute_value(x): Global ./>func absolute_value(x)

1
2 """Compute abs(x).""" absolute_value L_
3 if x > 0: result t{
4 return x
5 elif x ==

. absolute_value
6 return 0
7 else: | x -2
8 return -x § Return |,
9 : value

10 result = absolute_value(-2)

Edit code in Online Python Tutor

0
liiiiil End | Forward >

line that has just executed
» next line to execute

This implementation of absolute_value raises several important issues:

Conditional statements. A conditional statement in Python consists of a series of headers and
suites: a required if clause, an optional sequence of elif clauses, and finally an optional else clause:
if <expression>:

<suite>
elif <expression>:

<suite>
else:

<suite>

When executing a conditional statement, each clause is considered in order. The computational
process of executing a conditional clause follows.

1. Evaluate the header's expression.
2. If it is a true value, execute the suite. Then, skip over all subsequent clauses in the conditional
statement.

If the else clause is reached (which only happens if all if and elif expressions evaluate to false
values), its suite is executed.

Boolean contexts. Above, the execution procedures mention "a false value" and "a true value." The
expressions inside the header statements of conditional blocks are said to be in boolean contexts:
their truth values matter to control flow, but otherwise their values are not assigned or returned.
Python includes several false values, including 0, None, and the boolean value False. All other
numbers are true values. In Chapter 2, we will see that every built-in kind of data in Python has both
true and false values.

Boolean values. Python has two boolean values, called True and False. Boolean values represent
truth values in logical expressions. The built-in comparison operations, >, <, >=, <=, ==, !=, return
these values.

5> 4 < 2
False
>>> 5 5>= 5
True

This second example reads "5 is greater than or equal to 5", and corresponds to the function ge in the
operator module.

>>> 0 == -0
True

This final example reads "0 equals -0", and corresponds to eq in the operator module. Notice that
Python distinguishes assignment (=) from equality comparison (==), a convention shared across many
programming languages.

Boolean operators. Three basic logical operators are also built into Python:

https://www.composingprograms.com/pages/15-control.html 3/6



6/30/24, 9:48 AM

1.5 Control

>>> True and False
False

>>> True or False
True

>>> not False

True

Logical expressions have corresponding evaluation procedures. These procedures exploit the fact
that the truth value of a logical expression can sometimes be determined without evaluating all of its
subexpressions, a feature called short-circuiting.

To evaluate the expression <left> and <right>:

1. Evaluate the subexpression <left>.
2. If the result is a false value v, then the expression evaluates to v.
3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

1. Evaluate the subexpression <lefts.
2. If the result is a true value v, then the expression evaluates to v.
3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression not <exp>:
1. Evaluate <exp>; The value is True if the result is a false value, and False otherwise.

These values, rules, and operators provide us with a way to combine the results of comparisons.
Functions that perform comparisons and return boolean values typically begin with is, not followed by
an underscore (e.g., isfinite, isdigit, isinstance, etc.).

1.5.5 lIteration

Video: Show Hide

In addition to selecting which statements to execute, control statements are used to express
repetition. If each line of code we wrote were only executed once, programming would be a very
unproductive exercise. Only through repeated execution of statements do we unlock the full potential
of computers. We have already seen one form of repetition: a function can be applied many times,
although it is only defined once. Iterative control structures are another mechanism for executing the
same statements many times.

Consider the sequence of Fibonacci numbers, in which each number is the sum of the preceding two:
e, 1, 1, 2, 3, 5, 8, 13, 21, ...

Each value is constructed by repeatedly applying the sum-previous-two rule. The first and second are
fixed to 0 and 1. For instance, the eighth Fibonacci number is 13.

We can use a while statement to enumerate n Fibonacci numbers. We need to track how many values
we've created (k), along with the kth value (curr) and its predecessor (pred). Step through this function
and observe how the Fibonacci numbers evolve one by one, bound to curr.

def fib(n): Globa/func fib(n)

"""Compute the nth Fibonacci number, for n >= 2.""" fib L

pred, curr = @, 1 # Fibonacci numbers 1 and 2

while k < n:
pred, curr = curr, pred + curr
k =k+1

1
2
3
4 k =2 # Which Fib number is curr?
5
6
7
8 return curr

9
» 10 result = fib(8)

Edit code in Online Python Tutor

O

line that has just executed
P next line to execute

Remember that commas seperate multiple names and values in an assignment statement. The line:

pred, curr = curr, pred + curr

https://www.composingprograms.com/pages/15-control.html

4/6



6/30/24, 9:48 AM

1.5 Control

has the effect of rebinding the name pred to the value of curr, and simultanously rebinding curr to the
value of pred + curr. All of the expressions to the right of = are evaluated before any rebinding takes
place.

This order of events -- evaluating everything on the right of = before updating any bindings on the left
-- is essential for correctness of this function.

Awhile clause contains a header expression followed by a suite:

while <expression>:
<suite>

To execute a while clause:

1. Evaluate the header's expression.
2. If it is a true value, execute the sulite, then return to step 1.

In step 2, the entire suite of the while clause is executed before the header expression is evaluated
again.

In order to prevent the suite of a while clause from being executed indefinitely, the suite should
always change some binding in each pass.

Awhile statement that does not terminate is called an infinite loop. Press <control>-c to force Python
to stop looping.

1.5.6 Testing

Testing a function is the act of verifying that the function's behavior matches expectations. Our
language of functions is now sufficiently complex that we need to start testing our implementations.

A test is a mechanism for systematically performing this verification. Tests typically take the form of
another function that contains one or more sample calls to the function being tested. The returned
value is then verified against an expected result. Unlike most functions, which are meant to be
general, tests involve selecting and validating calls with specific argument values. Tests also serve as
documentation: they demonstrate how to call a function and what argument values are appropriate.

Assertions. Programmers use assert statements to verify expectations, such as the output of a
function being tested. An assert statement has an expression in a boolean context, followed by a
quoted line of text (single or double quotes are both fine, but be consistent) that will be displayed if
the expression evaluates to a false value.

>>> assert fib(8) == 13, 'The 8th Fibonacci number should be 13’

When the expression being asserted evaluates to a true value, executing an assert statement has no
effect. When it is a false value, assert causes an error that halts execution.

A test function for fib should test several arguments, including extreme values of n.

>>> def fib_test():
assert fib(2) == 1, 'The 2nd Fibonacci number should be 1'
assert fib(3) == 1, 'The 3rd Fibonacci number should be 1’
assert fib(50) == 7778742049, 'Error at the 50th Fibonacci number'

When writing Python in files, rather than directly into the interpreter, tests are typically written in the
same file or a neighboring file with the suffix _test.py.

Doctests. Python provides a convenient method for placing simple tests directly in the docstring of a
function. The first line of a docstring should contain a one-line description of the function, followed by
a blank line. A detailed description of arguments and behavior may follow. In addition, the docstring
may include a sample interactive session that calls the function:

>>> def sum_naturals(n):
"""Return the sum of the first n natural numbers.

>>> sum_naturals(10)
55

>>> sum_naturals(100)
5050

total, k
while k <

total, k = total + k, k + 1
return total

0, 1
n

Then, the interaction can be verified via the doctest module. Below, the globals function returns a
representation of the global environment, which the interpreter needs in order to evaluate
expressions.

>>> from doctest import testmod
>>> testmod()

https://www.composingprograms.com/pages/15-control.html 5/6



6/30/24, 9:48 AM 1.5 Control
TestResults(failed=0, attempted=2)

To verify the doctest interactions for only a single function, we use a doctest function called
run_docstring_examples. This function is (unfortunately) a bit complicated to call. Its first argument is
the function to test. The second should always be the result of the expression globals(), a built-in
function that returns the global environment. The third argument is True to indicate that we would like
"verbose" output: a catalog of all tests run.

>>> from doctest import run_docstring_examples
>>> run_docstring_examples(sum_naturals, globals(), True)
Finding tests in NoName
Trying:
sum_naturals(10)
Expecting:
55
ok
Trying:
sum_naturals(100)
Expecting:
5050
ok

When the return value of a function does not match the expected result, the run_docstring_examples
function will report this problem as a test failure.

When writing Python in files, all doctests in a file can be run by starting Python with the doctest
command line option:

python3 -m doctest <python_source_file>

The key to effective testing is to write (and run) tests immediately after implementing new functions. It
is even good practice to write some tests before you implement, in order to have some example
inputs and outputs in your mind. A test that applies a single function is called a unit test. Exhaustive
unit testing is a hallmark of good program design.

Continue: 1.6 Higher-Order Functions

Composing Programs by John DeNero, based on the textbook Structure and Interpretation of Computer Programs by Harold Abelson and Gerald Jay Sussman, is licensed under a Creative
Commons Attribution-ShareAlike 3.0 Unported License.

https://www.composingprograms.com/pages/15-control.html 6/6



