7/1/24, 8:07 AM Homework 7 | CS 61A Spring 2024

Homework 7: Scheme | hwo7.zip (hwo7.zip) |

Due by 11:59pm on Thursday, April 4

Instructions

Download hwO07.zip (hwO07.zip). Inside the archive, you will find a file called hwO7.scm
(hwO07.scm), along with a copy of the ok autograder.

Submission: When you are done, submit the assignment by uploading all code files you've
edited to Gradescope. You may submit more than once before the deadline; only the final
submission will be scored. Check that you have successfully submitted your code on
Gradescope. See Lab 0 (/~cs61a/sp24/lab/lab00#task-c-submitting-the-assignment) for more
instructions on submitting assignments.

Using Ok: If you have any questions about using Ok, please refer to this guide.
(/~cs61a/sp24/articles/using-ok)

Readings: You might find the following references useful:

e Scheme Specification (/~cs61a/sp24/articles/scheme-spec/)
e Scheme Built-in Procedure Reference (/~cs61a/sp24/articles/scheme-builtins/)

Grading: Homework is graded based on correctness. Each incorrect problem will decrease
the total score by one point. This homework is out of 2 points.

The 61A Scheme interpreter is included in each Scheme assignment. To start it, type python3
scheme in a terminal. To load a Scheme file called f.scm, type python3 scheme -i f.scm. To
exit the Scheme interpreter, type (exit).

Scheme Editor

All Scheme assignments include a web-based editor that makes it easy to run ok tests and
visualize environments. Type python3 editor in a terminal, and the editor will open in a
browser window (at http://127.0.0.1:31415/ ). To stop running the editor and return to the
command line, type Ctrl-C in the terminal where you started the editor.

The Run button loads the current assignment's .scm file and opens a Scheme interpreter,
allowing you to try evaluating different Scheme expressions.

The Test button runs all ok tests for the assignment. Click View Case for a failed test, then
click Debug to step through its evaluation.

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw07/ 1/5



7/1/24, 8:07 AM Homework 7 | CS 61A Spring 2024

Recommended VS Code Extensions

If you choose to use VS Code as your text editor (instead of the web-based editor), install the
vscode-scheme (https:/marketplace.visualstudio.com/items?itemName=sjhuangx.vscode-
scheme) extension so that parentheses are highlighted.

Before:

(define foo (lambda (x y z) (if x y z)))

(foo 1 2 (print 'hi))

((lambda (a) (print 'a)) 100)

After:

(define foo (lambda (x y z ifxy z}))

(foo 1 2 print 'hi))

((lambda (a) (print 'a)’ 100)

In addition, the 61a-bot (installation instructions (/~cs61a/sp24/articles/61a-bot)) VS Code
extension is available for Scheme homeworks. The bot is also integrated into ok .

Required Questions

[ Getting Started Videos ]

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw07/ 2/5



7/1/24, 8:07 AM Homework 7 | CS 61A Spring 2024
Q1: Pow

Implement a procedure pow that raises a base to the power of a nonnegative integer exp.
The number of recursive pow calls should grow logarithmically with respect to exp, rather
than linearly. For example, (pow 2 32) should result in 5 recursive pow calls rather than 32

recursive pow calls.

Hint:

1. x% = (xY)?
2. X = x(x¥)?

For example, 276 = (28)2 and 277 = 2 * (28)2,

You may use the built-in predicates even? and odd?. Also, the square procedure is
defined for you.

Scheme doesn't have while or for statements, so use recursion to solve this
problem.

(define (square n) (* n n))

(define (pow base exp)
"YOUR-CODE-HERE

Use Ok to test your code:

python3 ok -g pow Qo

Q2: Repeatedly Cube

Implement repeatedly-cube, which receives a number x and cubes it n times.

Here are some examples of how repeatedly-cube should behave:

scm> (repeatedly-cube 100 1) ; 1 cubed 100 times is still 1
1

scm> (repeatedly-cube 2 2) ; (273)*3

512

scm> (repeatedly-cube 3 2) ; ((273)*3)*3

134217728

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw07/ 3/5



7/1/24, 8:07 AM Homework 7 | CS 61A Spring 2024

For information on let, see the Scheme spec (/~cs61a/sp24/articles/scheme-
spec/#let).

(define (repeatedly-cube n x)
(if (zero? n)
X
(let
( )
Gy y vy

Use Ok to test your code:

python3 ok -q repeatedly-cube 9%

Q3: Cadr

Note: Scheme lists are covered in the lecture videos for Wednesday, April 3.

Define the procedure cadr, which returns the second element of a list. Also define caddr,
which returns the third element of a list.

(define (cddr s)
(cdr (cdr s)))

(define (cadr s)

'YOUR-CODE-HERE

(define (caddr s)
"YOUR-CODE -HERE

Use Ok to test your code:

python3 ok -q cadr-caddr 9o

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw07/

4/5



7/1/24, 8:07 AM Homework 7 | CS 61A Spring 2024

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw07/ 5/5



