7/1/24, 8:15 AM

CoMPoSING PRoGRAMS

Chapter 3
Hide contents

3.1 Introduction

3.1.1 Programming Languages

3.2 Functional Programming

3.2.1 Expressions
3.2.2 Definitions

3.2.3 Compound values
3.2.4 Symbolic Data
3.2.5 Turtle graphics

3.3 Exceptions

3.3.1 Exception Objects

3.4 Interpreters for Languages
with Combination

3.4.1 A Scheme-Syntax
Calculator

3.4.2 Expression Trees
3.4.3 Parsing Expressions

3.4.4 Calculator Evaluation

3.5 Interpreters for Languages
with Abstraction

3.5.1 Structure
3.5.2 Environments
3.5.3 Data as Programs

3.3 Exceptions

TEXT PROJECTS TUTOR ABOUT

3.3 Exceptions

Programmers must be always mindful of possible errors that may arise in their programs. Examples
abound: a function may not receive arguments that it is designed to accept, a necessary resource
may be missing, or a connection across a network may be lost. When designing a program, one must
anticipate the exceptional circumstances that may arise and take appropriate measures to handle
them.

There is no single correct approach to handling errors in a program. Programs designed to provide
some persistent service like a web server should be robust to errors, logging them for later
consideration but continuing to service new requests as long as possible. On the other hand, the
Python interpreter handles errors by terminating immediately and printing an error message, so that
programmers can address issues as soon as they arise. In any case, programmers must make
conscious choices about how their programs should react to exceptional conditions.

Exceptions, the topic of this section, provides a general mechanism for adding error-handling logic to
programs. Raising an exception is a technique for interrupting the normal flow of execution in a
program, signaling that some exceptional circumstance has arisen, and returning directly to an
enclosing part of the program that was designated to react to that circumstance. The Python
interpreter raises an exception each time it detects an error in an expression or statement. Users can
also raise exceptions with raise and assert statements.

Raising exceptions. An exception is a object instance with a class that inherits, either directly or
indirectly, from the BaseException class. The assert statement introduced in Chapter 1 raises an
exception with the class AssertionError. In general, any exception instance can be raised with the
raise statement. The general form of raise statements are described in the Python docs. The most
common use of raise constructs an exception instance and raises it.

>>> raise Exception('An error occurred')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
Exception: an error occurred

When an exception is raised, no further statements in the current block of code are executed. Unless
the exception is handled (described below), the interpreter will return directly to the interactive read-
eval-print loop, or terminate entirely if Python was started with a file argument. In addition, the
interpreter will print a stack backtrace, which is a structured block of text that describes the nested set
of active function calls in the branch of execution in which the exception was raised. In the example
above, the file name <stdin> indicates that the exception was raised by the user in an interactive
session, rather than from code in a file.

Handling exceptions. An exception can be handled by an enclosing try statement. A try statement
consists of multiple clauses; the first begins with try and the rest begin with except:
try:

<try suite>

except <exception class> as <name>:
<except suite>

The <try suite> is always executed immediately when the try statement is executed. Suites of the
except clauses are only executed when an exception is raised during the course of executing the <try
suite>. Each except clause specifies the particular class of exception to handle. For instance, if the
<exception class> iS AssertionError, then any instance of a class inheriting from Assertionkrror that is
raised during the course of executing the <try suite> will be handled by the following <except suite>.
Within the <except suite>, the identifier <name> is bound to the exception object that was raised, but
this binding does not persist beyond the <except suite>.

For example, we can handle a zerobivisionError exception using a try statement that binds the name
x to 0 when the exception is raised.

>>> try:
x = 1/0
except ZeroDivisionError as e:
print(‘'handling a', type(e))
X =0
handling a <class 'ZeroDivisionError'>

https://www.composingprograms.com/pages/33-exceptions.html

13



7/1/24, 8:15 AM

3.3 Exceptions

>>> X

A try statement will handle exceptions that occur within the body of a function that is applied (either
directly or indirectly) within the <try suite>. When an exception is raised, control jumps directly to the
body of the <except suite> of the most recent try statement that handles that type of exception.

>>> def invert(x):
result = 1/x # Raises a ZeroDivisionError if x is @
print(‘'Never printed if x is @')
return result

>>> def invert_safe(x):
try:
return invert(x)
except ZeroDivisionError as e:
return str(e)

>>> invert_safe(2)
Never printed if x is ©
0.5

>>> invert_safe(0)
'division by zero'

This example illustrates that the print expression in invert is never evaluated, and instead control is
transferred to the suite of the except clause in invert_safe. Coercing the zerobivisionError e to a string
gives the human-interpretable string returned by invert_safe: 'division by zero'.

3.3.1 Exception Objects

Exception objects themselves can have attributes, such as the error message stated in an assert
statement and information about where in the course of execution the exception was raised. User-
defined exception classes can have additional attributes.

In Chapter 1, we implemented Newton's method to find the zeros of arbitrary functions. The following
example defines an exception class that returns the best guess discovered in the course of iterative
improvement whenever a valueerror occurs. A math domain error (a type of valuetrror) is raised when
sqrt is applied to a negative number. This exception is handled by raising an IterImproveError that
stores the most recent guess from Newton's method as an attribute.

First, we define a new class that inherits from Exception.

>>> class IterImproveError(Exception):
def __init_ (self, last_guess):
self.last_guess = last_guess

Next, we define a version of improve, our generic iterative improvement algorithm. This version
handles any valueError by raising an IterImprovetrror that stores the most recent guess. As before,
improve takes as arguments two functions, each of which takes a single numerical argument. The
update function returns new guesses, while the done function returns a boolean indicating that
improvement has converged to a correct value.

>>> def improve(update, done, guess=1, max_updates=1000):
k=0
try:
while not done(guess) and k < max_updates:
guess = update(guess)
k=k+1
return guess
except ValueError:
raise IterImproveError(guess)

Finally, we define find_zero, which returns the result of improve applied to a Newton update function
returned by newton_update, which is defined in Chapter 1 and requires no changes for this example.
This version of find_zero handles an IterImproveError by returning its last guess.

>>> def find_zero(f, guess=1):
def done(x):
return f(x) == 0
try:
return improve(newton_update(f), done, guess)

https://www.composingprograms.com/pages/33-exceptions.html 2/3



7/1/24, 8:15 AM

3.3 Exceptions

except IterImproveError as e:
return e.last_guess

Consider applying find_zero to find the zero of the function 212 4 \/E This function has a zero at 0,
but evaluating it on any negative number will raise a valuetrror. Our Chapter 1 implementation of
Newton's Method would raise that error and fail to return any guess of the zero. Our revised
implementation returns the last guess found before the error.

>>> from math import sqrt
>>> find_zero(lambda x: 2*x*x + sqrt(x))
-0.030211203830201594

Although this approximation is still far from the correct answer of 0, some applications would prefer
this coarse approximation to a valueError.

Exceptions are another technique that help us as programs to separate the concerns of our program
into modular parts. In this example, Python's exception mechanism allowed us to separate the logic
for iterative improvement, which appears unchanged in the suite of the try clause, from the logic for
handling errors, which appears in except clauses. We will also find that exceptions are a useful feature
when implementing interpreters in Python.

Continue: 3.4 Interpreters for Languages with Combination

Composing Programs by John DeNero, based on the textbook Structure and Interpretation of Computer Programs by Harold Abelson and Gerald Jay Sussman, is licensed under a Creative
Commons Attribution-ShareAlike 3.0 Unported License.

https://www.composingprograms.com/pages/33-exceptions.html

3/3



