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3.4 Interpreters for Languages with Combination

We now embark on a tour of the technology by which languages are established in terms of other
languages. Metalinguistic abstraction — establishing new languages — plays an important role in all
branches of engineering design. It is particularly important to computer programming, because in
programming not only can we formulate new languages but we can also implement these languages
by constructing interpreters. An interpreter for a programming language is a function that, when
applied to an expression of the language, performs the actions required to evaluate that expression.

We will first define an interpreter for a language that is a limited subset of Scheme, called Calculator.
Then, we will develop a sketch of an interpreter for Scheme as a whole. The interpreter we create will
be complete in the sense that it will allow us to write fully general programs in Scheme. To do so, it
will implement the same environment model of evaluation that we introduced for Python programs in
Chapter 1.

Many of the examples in this section are contained in the companion Scheme-Syntax Calculator
example, as they are too complex to fit naturally in the format of this text.

3.4.1 A Scheme-Syntax Calculator

The Scheme-Syntax Calculator (or simply Calculator) is an expression language for the arithmetic
operations of addition, subtraction, multiplication, and division. Calculator shares Scheme's call
expression syntax and operator behavior. Addition (+) and multiplication (*) operations each take an
arbitrary number of arguments:

> (+1234)
10

> (+)

2]

> (*1234)
24

> (%)

1

Subtraction (-) has two behaviors. With one argument, it negates the argument. With at least two
arguments, it subtracts all but the first from the first. Division (/) has a similar pair of two behaviors:
compute the multiplicative inverse of a single argument or divide all but the first into the first:

> (- 1012 3)
4

> (- 3)

-3

(/ 15 12)
.25

(/ 30 5 2)

® VvV WV PV

(/ 10)
.1

A call expression is evaluated by evaluating its operand sub-expressions, then applying the operator
to the resulting arguments:

> (- 100 (* 7 (+ 8 (/ -12 -3))))

16.0

We will implement an interpreter for the Calculator language in Python. That is, we will write a Python
program that takes string lines as input and returns the result of evaluating those lines as a Calculator

expression. Our interpreter will raise an appropriate exception if the calculator expression is not well
formed.

3.4.2 Expression Trees

Until this point in the course, expression trees have been conceptual entities to which we have
referred in describing the process of evaluation; we have never before explicitly represented
expression trees as data in our programs. In order to write an interpreter, we must operate on
expressions as data.
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A primitive expression is just a number or a string in Calculator: either an int or float or an operator
symbol. All combined expressions are call expressions. A call expression is a Scheme list with a first
element (the operator) followed by zero or more operand expressions.

Scheme Pairs. In Scheme, lists are nested pairs, but not all pairs are lists. To represent Scheme
pairs and lists in Python, we will define a class pair that is similar to the r1ist class earlier in the
chapter. The implementation appears in scheme_reader.

The empty list is represented by an object called nil1, which is an instance of the class nil. We
assume that only one nil instance will ever be created.

The pair class and nil object are Scheme values represented in Python. They have repr strings that
are Python expressions and str strings that are Scheme expressions.

>>> s = Pair(1, Pair(2, nil))
>>> s

Pair(1, Pair(2, nil))

>>> print(s)

(12)

They implement the basic Python sequence interface of length and element selection, as well as a
map method that returns a Scheme list.

>>> len(s)

2

>>> s[1]

2

>>> print(s.map(lambda x: x+4))
(5 6)

Nested Lists. Nested pairs can represent lists, but the elements of a list can also be lists themselves.
Pairs are therefore sufficient to represent Scheme expressions, which are in fact nested lists.

>>> expr = Pair('+', Pair(Pair('*', Pair(3, Pair(4, nil))), Pair(5, nil)))
>>> print(expr)

(+ (* 3 4)5)

>>> print(expr.second.first)

(* 3 4)

>>> expr.second.first.second.first

3

This example demonstrates that all Calculator expressions are nested Scheme lists. Our Calculator
interpreter will read in nested Scheme lists, convert them into expression trees represented as nested
pair instances (Parsing expressions below), and then evaluate the expression trees to produce
values (Calculator evaluation below).

3.4.3 Parsing Expressions

Parsing is the process of generating expression trees from raw text input. A parser is a composition of
two components: a lexical analyzer and a syntactic analyzer. First, the lexical analyzer partitions the
input string into tokens, which are the minimal syntactic units of the language such as names and
symbols. Second, the syntactic analyzer constructs an expression tree from this sequence of tokens.
The sequence of tokens produced by the lexical analyzer is consumed by the syntactic analyzer.

Lexical analysis. The component that interprets a string as a token sequence is called a tokenizer or
lexical analyzer. In our implementation, the tokenizer is a function called tokenize_line in
scheme_tokens. Scheme tokens are delimited by white space, parentheses, dots, or single quotation
marks. Delimiters are tokens, as are symbols and numerals. The tokenizer analyzes a line character
by character, validating the format of symbols and numerals.

Tokenizing a well-formed Calculator expression separates all symbols and delimiters, but identifies
multi-character numbers (e.g., 2.3) and converts them into numeric types.

>>> tokenize_line('(+ 1 (* 2.3 45))")
[‘(IJ ‘+.) 1) I(') I*') 2‘3) 45) I)') I)']

Lexical analysis is an iterative process, and it can be applied to each line of an input program in
isolation.
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Syntactic analysis. The component that interprets a token sequence as an expression tree is called
a syntactic analyzer. Syntactic analysis is a tree-recursive process, and it must consider an entire
expression that may span multiple lines.

Syntactic analysis is implemented by the scheme_read function in scheme_reader. It is tree-recursive
because analyzing a sequence of tokens often involves analyzing a subsequence of those tokens into
a subexpression, which itself serves as a branch (e.g., operand) of a larger expression tree.
Recursion generates the hierarchical structures consumed by the evaluator.

The scheme_read function expects its input src to be a Buffer instance that gives access to a sequence
of tokens. A Buffer, defined in the buffer module, collects tokens that span multiple lines into a single
object that can be analyzed syntactically.

>>> lines = ['(+ 1", ' (* 2.3 45))"']

>>> expression = scheme_read(Buffer(tokenize_lines(lines)))

>>> expression

Pair('+', Pair(1, Pair(Pair('*', Pair(2.3, Pair(45, nil))), nil)))
>>> print(expression)

(+ 1 (* 2.3 45))

The scheme_read function first checks for various base cases, including empty input (which raises an
end-of-file exception, called eorerror in Python) and primitive expressions. A recursive call to
read_tail is invoked whenever a ( token indicates the beginning of a list.

The read_tail function continues to read from the same input src, but expects to be called after a list
has begun. Its base cases are an empty input (an error) or a closing parenthesis that terminates the
list. Its recursive call reads the first element of the list with scheme_read, reads the rest of the list with
read_tail, and then returns a list represented as a pair.

This implementation of scheme_read can read well-formed Scheme lists, which are all we need for the
Calculator language. Parsing dotted lists and quoted forms is left as an exercise.

Informative syntax errors improve the usability of an interpreter substantially. The syntaxerror
exceptions that are raised include a description of the problem encountered.

3.4.4 Calculator Evaluation

The scalc module implements an evaluator for the Calculator language. The calc_eval function takes
an expression as an argument and returns its value. Definitions of the helper functions simplify,
reduce, and as_scheme_list appear in the model and are used below.

For Calculator, the only two legal syntactic forms of expressions are numbers and call expressions,
which are pair instances representing well-formed Scheme lists. Numbers are self-evaluating; they
can be returned directly from calc_eval. Call expressions require function application.

>>> def calc_eval(exp):
"""Evaluate a Calculator expression.
if type(exp) in (int, float):
return simplify(exp)
elif isinstance(exp, Pair):
arguments = exp.second.map(calc_eval)
return simplify(calc_apply(exp.first, arguments))
else:
raise TypeError(exp +

won

is not a number or call expression')

Call expressions are evaluated by first recursively mapping the calc_eval function to the list of
operands, which computes a list of arguments. Then, the operator is applied to those arguments in a
second function, calc_apply.

The Calculator language is simple enough that we can easily express the logic of applying each
operator in the body of a single function. In calc_apply, each conditional clause corresponds to
applying one operator.

>>> def calc_apply(operator, args):
"""Apply the named operator to a list of args.
if not isinstance(operator, str):
raise TypeError(str(operator) + ' is not a symbol')
if operator == '+':
return reduce(add, args, 9)
elif operator == '-":

if len(args) == o:

won
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raise TypeError(operator + ' requires at least 1 argument')
elif len(args) == 1:
return -args.first
else:
return reduce(sub, args.second, args.first)
elif operator == '*':
return reduce(mul, args, 1)
elif operator == '/':
if len(args) == 0o:
raise TypeError(operator + ' requires at least 1 argument')
elif len(args) == 1:
return 1/args.first
else:
return reduce(truediv, args.second, args.first)
else:
raise TypeError(operator + ' is an unknown operator')

Above, each suite computes the result of a different operator or raises an appropriate Typekrror when
the wrong number of arguments is given. The calc_apply function can be applied directly, but it must
be passed a list of values as arguments rather than a list of operand expressions.

>>> calc_apply('+', as_scheme_list(1, 2, 3))

6

>>> calc_apply('-', as_scheme_list(10, 1, 2, 3))
4

>>> calc_apply('*', nil)

1

>>> calc_apply('*', as_scheme_list(1, 2, 3, 4, 5))
120

>>> calc_apply('/', as_scheme_list(40, 5))

8.0

The role of calc_eval is to make proper calls to calc_apply by first computing the value of operand sub-
expressions before passing them as arguments to calc_apply. Thus, calc_eval can accept a nested
expression.

>>> print(exp)

(+ (* 3 4)5)

>>> calc_eval(exp)
17

The structure of calc_eval is an example of dispatching on type: the form of the expression. The first
form of expression is a number, which requires no additional evaluation step. In general, primitive
expressions that do not require an additional evaluation step are called self-evaluating. The only self-
evaluating expressions in our Calculator language are numbers, but a general programming language
might also include strings, boolean values, etc.

Read-eval-print loops. A typical approach to interacting with an interpreter is through a read-eval-
print loop, or REPL, which is a mode of interaction that reads an expression, evaluates it, and prints
the result for the user. The Python interactive session is an example of such a loop.

An implementation of a REPL can be largely independent of the interpreter it uses. The function
read_eval_print_loop below buffers input from the user, constructs an expression using the language-
specific scheme_read function, then prints the result of applying calc_eval to that expression.

>>> def read_eval_print_loop():
"""Run a read-eval-print Loop for calculator.
while True:
src = buffer_input()
while src.more_on_line:
expression = scheme_read(src)
print(calc_eval(expression))

won

This version of read_eval_print_loop contains all of the essential components of an interactive
interface. An example session would look like:

(*123)

(+)

>

6

>

(7]

> (+2 (/ 48))
2.5

> (+ 2 2) (*33)
a4
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9
> (+ 1

(- 23)

(* 4 2.5))
-12

This loop implementation has no mechanism for termination or error handling. We can improve the
interface by reporting errors to the user. We can also allow the user to exit the loop by signalling a
keyboard interrupt (control-c on UNIX) or end-of-file exception (control-p on UNIX). To enable these
improvements, we place the original suite of the while statement within a try statement. The first
except clause handles syntaxError and valuekrror exceptions raised by scheme_read as well as
TypeError and zeroDivisionError exceptions raised by calc_eval.

>>> def read_eval_print_loop():
"""Run a read-eval-print Loop for calculator."""
while True:
try:
src = buffer_input()
while src.more_on_line:
expression = scheme_read(src)
print(calc_eval(expression))
except (SyntaxError, TypeError, ValueError, ZeroDivisionError) as err:
print(type(err).__name__ + ':', err)
except (KeyboardInterrupt, EOFError): # <Control>-D, etc.
print('Calculation completed.')
return

This loop implementation reports errors without exiting the loop. Rather than exiting the program on
an error, restarting the loop after an error message lets users revise their expressions. Upon
importing the readline module, users can even recall their previous inputs using the up arrow or
control-p. The final result provides an informative error reporting interface:

>)

SyntaxError: unexpected token: )

> 2.3.4

ValueError: invalid numeral: 2.3.4

> +

TypeError: + is not a number or call expression

> (/ 5)

TypeError: / requires exactly 2 arguments

> (/ 10)

ZeroDivisionError: division by zero

As we generalize our interpreter to new languages other than Calculator, we will see that the
read_eval_print_loop is parameterized by a parsing function, an evaluation function, and the exception
types handled by the try statement. Beyond these changes, all REPLs can be implemented using the
same structure.

Continue: 3.5 Interpreters for Languages with Abstraction
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