
Lecture #32: Macros

Paul N. Hilfinger

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 1

Defining Syntax

• In effect, function and class definitions extend the Python language
by adding new commands and data types.

• However, these are highly constrained extensions.

• For example, there is no way to define
def swap(x, y):

"""Swap the values of variables X and Y."""

????

because Python uses call-by-value.

• Likewise, there is generally no way to define a new control construct.

• Indeed, language extension can be dangerous; it’s easy to get wrong
and can make programs less easy to read or understand.

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 2

Macros

• A macro is a programming-language construct that allows one to
define, in effect, a function that generates program text that is
substituted for “calls” on the macro function.

• For example (making up some new Python syntax):
defmacro swap(x, y):

x, y = y, x

• A call on this macro, such as
swap(a[i], a[k])

would be expanded into
a[i], a[k] = a[k], a[i]

which is what actually gets executed.

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 3

A Little History

• The term “macro” comes from the Greek (µακρoς , meaning “long” or
“lengthy”).

• Early use was in assembly languages. For example, in the IBM/360
assembler, I could define a macro to move a value from one storage
location to another via a saved temporary register like this:

Macro Macro Resulting
Definition Invocation Assembly Code

MACRO

&NAME MOVE &TO,&FROM

&NAME ST 2, SAVE

L 2, &FROM

ST 2, &TO

L 2, SAVE

MEND

START MOVE X, Y START ST 2, SAVE

L 2, X

ST 2, Y

L 2, SAVE

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 4

A Little More History

• Since then, macros in one form or another have sprung up everywhere:
Excel macros, Word macros, keyboard macros, etc.

• They appear in high-level programming languages such as C, C++, and
Rust.

• The LaTex text formatting system consists of a large collection of
TEX macros.

• Stand-alone macro processors such as M4 and the C preprocessor
allow one to add macro-substitution capabilities to almost anything.

• Personal note: I once aced an internship by using the IBM/360
assembler’s macro language to create the front end for a database
report generator.

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 5

Simple Macro Features

• The (imaginary) defmacro construct is essentially the same as the
macro facilities of C and C++.

• In those languages, the definition

#define BLUE 3

simply causes ‘3’ to be substituted for the identifier ‘BLUE’ wherever
it appears.

• And definitions such as

#define doList(Var, List) \

for (LinkedList* Var = List; Var != NULL; Var = Var->next)

expands

doList(A, myList)

into

for (LinkedList* A = myList; A != NULL; A = A->next)

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 6

C Macro Implementation

• These substitutions are performed in C and C++ by a preprocessor
program before standard compilation takes place.

• The preprocessor performs substitutions and deletes all the macro-definition
statements (as well as C/C++ comments).

• These macros do not observe scope rules; the macro preprocessor
actually knows almost nothing about C.

• They simply perform textual substitutions.

• In fact, one can use the C preprocessor as a separate program on
any kind of textual input data.

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 7

Bells and Whistles

• Aside from simple substitution of macro parameters, C/C++ macros
provide very little in the way of text processing. . .

• . . . aside from “stringification”:

#define defsym(x) x = #x

defsym(y) expands into y = "y"

• . . . and token concatenation:

#define doArray(var, A, low, high) \

for (int var ## _index = low; var ## _index < high; \

var ## _index += 1) { \

int var = (A)[var ## _index];

#define endDo }

This example allows one to write things like

doArray(p, anArray, 0, N)

printf("Item %d is %d.\n", p_index, p);

endDo

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 8

Conditional Compilation

• The C macro preprocessor also provides statements like this:

#if defined(NDEBUG)

#define assert(Test, Message)

#else

#define assert(Test, Message) \

if (!(Test)) { \

fprintf(stderr, "%s\n", Message); \

abort(1); \

}

#endif

• This example says that if a macro named NDEBUG is defined, we
define a macro named assert to do nothing (it expands to nothing),
and otherwise it expands to a statement that tests whether an
expression Test is true, and exits with an error message if it isn’t.

• Thus, when NDEBUG is defined, all assertions in the program are
“turned off” and consume no execution time.

• This facility is called conditional compilation. Everything here happens
before any execution of the program.

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 9

Scheme Macros

• The Lisp family has its own version of macro processing, one that is
far more powerful than that of C.

• Full Scheme provides a powerful (but rather tricky) way to create
new special forms: define-syntax.

• One of the possible extensions of our project is a simpler, more
traditional form of this: define-macro.

• Macros are like functions, but

– Do not evaluate their arguments (this is what makes them special
forms).

– Automatically treat the returned value as a Scheme expression
and execute it.

• Thus, macros “write” programs that then get executed.

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 10

Review: Quasiquote

• Writing programs that write programs entails constructing Scheme
expressions that often contain substantial constant parts (that one
would like to write as ordinary Scheme lists) with pieces that are
computed and differ from one expansion to another.

• For this purpose, it is convenient to have a minilanguage that allows
one to write expressions that resemble the expressions they produce.

• With quasiquote, I can write
(list 'a 'b (+ 2 3) 'd) ;; (a b 5 d)

as
‘(a b ,(+ 2 3) d) ;; That's a backquote in front

• That is, everything preceded by a comma is replaced by its value.

• Additionally, in place of
(define values (list (+ 2 3) (- 2 1)))

(append '(a b) values '(d)) ;; which produces (a b 5 1 d)

I can write
‘(a b ,@values d) or ‘(a b ,@(list (+ 2 3) (- 2 1)) d)

• Expressions preceded by ‘,@’ are evaluated and their (list) values
spliced in.

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 11

Very Simple Example

• Suppose we’d like to be able to write
>>> (define x 3)

x

>>> (unless (list? x) (displayln x))

3

instead of
(if (not (list? x)) (displayln x))

• We can’t define unless as a function, because we don’t always want
to evaluate (displayln x).

• So instead, we write
(define-macro (unless cond body)

‘(if (not ,cond) ,body))

• If we evaluate
(unless (list? x) (displayln x))

the unless macro first computes
(if (not (list? x)) (displayln x))

which, rather than being returned, is first evaluated to print 3.

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 12

Macro Example

• Suppose we want to define something like Python’s list comprehensions
for Scheme.

• For example, I’d like to be able to write
>>> (define L '(1 2 3 4 5))

>>> (for-list x (* x x) L) ;; Like [x*x for x in L]

(1 4 9 16 25)

• Here, we don’t want to evaluate x or (* x x) immediately. Otherwise,
it’s a shorthand for map.

• We can write it as a macro:
(define-macro (for-list var expr lst)

‘(map (lambda (,var) ,expr) ,lst))

• So each time we evaluate
(for-list x (* x x) '(1 2 3 4 5))

it first computes the list
(map (lambda (x) (* x x)) '(1 2 3 4 5))

and then evaluates that to get the result.

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 13

Macro Example (II)

• Along the same lines, we might do some sort of traditional counting
loop:

• I’d like to be able to write things like
>>> (for-range x 1 5 (* x x)) ;; Like [x*x for x in range(1, 6)]

(1 4 9 16 25)

• Here is code that would do what I want here:
(let ((low 1))

(define ($loop$ $so-far$ x)

(if (< x low) $so-far$

($loop$ (cons (* x x) $so-far$) (- x 1))))

($loop$ '() 5))

where the ‘$. . . $’ variables indicate things that are part of the
looping construct.

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 14

Macro Example (II) Continued

• To make a macro, we abstract away from
(let ((low 1))

(define ($loop$ $so-far$ x)

(if (< x low) $so-far$

($loop$ (cons (* x x) $so-far$) (- x 1))))

($loop$ '() 5))

to get this:
(define-macro (for-range control-var low high body)

‘(let ((low ,low))

(define ($loop$ $so-far$,control-var)

(if (< ,control-var low) $so-far$

($loop$ (cons ,body $so-far$) (- ,control-var 1))))

($loop$ '() ,high)))

• So (for-range x 1 5 (* x x)) first expands into the program at
the top, which is then executed.

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 15

Macro Example (III)

• We could also imagine combining these two, so as to be able to write
either of

>>> (for (x (list 1 2 3 4 5)) (* x x))

(1 4 9 16 25)

>>> (for (x 1 5) (* x x))

(1 4 9 16 25)

• That is, the macro takes its cue from whether the list specifier has
two arguments (the second assumed to be a list) or three (assumed
to be an integer range):

(define-macro (for list-spec body)

(let ((control-var (car list-spec))

(opnds (cdr list-spec)))

(if (= (length opnds) 1)

‘(for-list ,control-var ,body ,(car opnds))

‘(for-range ,control-var ,(car opnds) ,(car (cdr opnds)) ,body))))

• This is an example of conditional compilation in Scheme. The for

macro expands either into for-map or for-range, depending on the
number of elements in the list-spec parameter.

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 16

Name Clashes

• The unnecessary use of macros has long been discouraged, because
they introduce some serious issues.

• Consider our list comprehension example again:
(define-macro (for-range control-var low high body)

‘(let ((low ,low))

(define ($loop$ $so-far$,control-var)

(if (< ,control-var low) $so-far$

($loop$ (cons ,body $so-far$) (- ,control-var 1))))

($loop$ '() ,high)))

• The identifier $loop$ is intended to be local to the macro. I gave it
a funny name to make it unlikely that it will conflict with any names
the programmer has used in body.

• But there’s no guarantee that I’ve succeeded in preventing a clash.

• A problematic example:
>>> (define low 15)

>>> (for-range x 1 5 (* low x))

>>> (1 2 3 4 5) ;; WRONG!! Should be (15 30 45 60 75)

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 17

Name Clashes (II)

• One solution: some Lisp dialects supply a builtin function that generates
new symbols that are guaranteed to differ from all other symbols.

(define-macro (for-range control-var low high body)

(let ((low-name (gensym))

(so-far-name (gensym))

(loop-name (gensym)))

‘(let ((,low-name ,low))

(define (,loop-name ,so-far-name ,control-var)

(if (< ,control-var ,low-name) ,so-far-name

(,loop-name (cons ,body ,so-far-name)

(- ,control-var 1))))

(,loop-name '() ,high))))

• In the above, I’ve replaced the fixed symbols low, $so-far$, and
$loop$ with freshly generated symbols for each use of the macro.

Last modified: Fri Apr 12 10:56:51 2024 CS61A: Lecture #32 18

	Lecture #32: Macros
	Defining Syntax
	Macros
	A Little History
	A Little More History
	Simple Macro Features
	C Macro Implementation
	Bells and Whistles
	Conditional Compilation
	Scheme Macros
	Review: Quasiquote
	Very Simple Example
	Macro Example
	Macro Example (II)
	Macro Example (II) Continued
	Macro Example (III)
	Name Clashes
	Name Clashes (II)

