7/1/24, 8:22 AM Lab 10: Interpreters | CS 61A Spring 2024

Lab 10: Interpreters| lab10.zip (lab10.zip)

Due by 11:59pm on Wednesday, April 10.

Starter Files

Download lab10.zip (lab10.zip). Inside the archive, you will find starter files for the questions
in this lab, along with a copy of the Ok (ok) autograder.

Topics

Consult this section if you need a refresher on the material for this lab. It's okay to skip
directly to the questions and refer back here should you get stuck.

[Interpreters J

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab10/ 1/9

7/1/24, 8:22 AM Lab 10: Interpreters | CS 61A Spring 2024

Required Questions

~

Getting Started Videos }

L

Calculator

An interpreter is a program that executes programs. Today, we will extend the interpreter for
Calculator, a simple made-up language that is a subset of Scheme. This lab is like Project 4
in miniature.

The Calculator language includes only the four basic arithmetic operations: +, -, x,and /.
These operations can be nested and can take various numbers of arguments, just like in
Scheme. A few examples of calculator expressions and their corresponding values are shown
below.

cale> (+ 2 2 2)
6

calc> (- 5)
-5

cale> (x (+12) (+ 23 4))
27
Calculator expressions are represented as Python objects:

e Numbers are represented using Python numbers.
e The symbols for arithmetic operations are represented using Python strings (e.g. '+').
e Call expressions are represented using the Pair class below.

Pair Class

To represent Scheme lists in Python, we will use the Pair class (in both this lab and the
Scheme project). A Pair instance has two attributes: first and rest. Pair is always called
on two arguments. To make a list, nest calls to Pair and pass in nil as the second

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab10/ 2/9

7/1/24, 8:22 AM Lab 10: Interpreters | CS 61A Spring 2024
argument of the last pair.

e Look familiar? Pair is very similar to Link, the class we used to represent linked lists.
They differ in their str representation: printing a Pair instance displays the list using
Scheme syntax.

Note In the Python code, nil is bound to a user-defined object that represents an
empty Scheme list. Similarly, nil in Scheme evaluates to an empty list.

For example, once our interpreter reads in the Scheme expression (+ 2 3), it is represented
as Pair('+', Pair(2, Pair(3, nil))).

>>> p = Pair('+', Pair(2, Pair(3, nil)))
>>> p.first

Ly

>>> p.rest

Pair(2, Pair(3, nil))

>>> p.rest.first

2
>>> print(p)
(+ 2 3)

The Pair class has a map method that takes a one-argument python function fn. It returns
the Scheme list that results from applying fn to each element of the Scheme list.

>>> p.rest.map(lambda x: 2 * x)
Pair(4, Pair(6, nil))

[Pair Class]

Q1: Using Pair

Answer the following questions about a Pair instance representing the Calculator
expression (+ (- 2 4) 6 8).

Use Ok to test your understanding:

python3 ok -q using_pair -u 90

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab10/

3/9

7/1/24, 8:22 AM Lab 10: Interpreters | CS 61A Spring 2024

Calculator Evaluation

For Question 2 (New Procedure) and Question 4 (Saving Values), you'll need to update the
calc_eval function below, which evaluates a Calculator expression. For Question 2, you'll
determine what are the operator and operands for a call expression in Scheme as well as
how to apply a procedure to arguments the calc_apply line. For Question 4, you'll determine
how to look up the value of symbols previously defined.

def calc_eval(exp):

>>> calc_eval(Pair("define", Pair("a", Pair(1, nil))))
g

>>> calc_eval("a")

]

>>> calc_eval(Pair("+", Pair(1, Pair(2, nil))))

3

if isinstance(exp, Pair):

operator = ____________ # UPDATE THIS FOR Q2
operands = ____________ # UPDATE THIS FOR Q2
if operator == 'and': # and expressions

return eval_and(operands)
elif operator == 'define': # define expressions
return eval_define(operands)
else: # Call expressions
return calc_apply(,) # UPDATE THIS FOR Q2
elif exp in OPERATORS: # Looking up procedures
return OPERATORS[exp]

elif isinstance(exp, int) or isinstance(exp, bool): # Numbers and booleans
return exp

elif : # CHANGE THIS CONDITION FOR Q4
return # UPDATE THIS FOR Q4

Q2: New Procedure

Add the // operation to Calculator, a floor-division procedure such that (// dividend
divisor) returns the result of dividing dividend by divisor, ignoring the remainder (dividend
// divisor in Python). Handle multiple inputs as illustrated in the following example: (//
dividend divisorl divisor2 divisor3) evaluates to (((dividend // divisor1) // divisor2) //
divisor3) in Python. Assume every call to // has at least two arguments.

Hint: You will need to modify both the calc_eval and floor_div methods for this
question!

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab10/

4/9

7/1/24, 8:22 AM

Lab 10: Interpreters | CS 61A Spring 2024

cale> (// 1 1)

1

cale> (// 5 2)

2

cale> (/7 28 (+ 1 1) 1)

14

Hint: Make sure that every element in a Pair (the operator and all operands) will be
calc_eval -uated once, so that we can correctly apply the relevant Python operator to
operands! You may find the map method of the Pair class useful for this.

def floor_div(args):

>>>
10

>>>

1

>>>

>>>

>>>

>>>

>>>

>>>
20

floor_div(Pair(100, Pair(10, nil)))

floor_div(Pair(5, Pair(3, nil)))

floor_div(Pair(1, Pair(1, nil)))

floor_div(Pair(5, Pair(2, nil)))

floor_div(Pair(23, Pair(2, Pair(5, nil))))

calc_eval(Pair("//", Pair(4, Pair(2, nil))))

calc_eval(Pair("//", Pair(100, Pair(2, Pair(2, Pair(2, Pair(2, Pair(2, nil))))))).

calc_eval(Pair("//", Pair(100, Pair(Pair("+", Pair(2, Pair(3, nil))), nil))))

"x%% YOUR CODE HERE #xx*"

Use Ok to test your code:

python3

ok -g floor_div g0

Q3: New Form

Add and expressions to our Calculator interpreter as well as introduce the Scheme boolean
values #t and #f, represented as Python True and False. (The examples below assumes
conditional operators (e.g. <, >, =, etc) have already been implemented, but you do not

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab10/

5/9

7/1/24, 8:22 AM

Lab 10: Interpreters | CS 61A Spring 2024

have to worry about them for this question.)

cale> (and (=1 1) 3)

3

cale> (and (+ 1 0) (<10) (/10))
#f

calc> (and #f (+ 1 0))

#f

cale> (and @ 1 (+ 5 1)) ; 0 is a true value in Scheme!

6

In a call expression, we first evaluate the operator, then evaluate the operands, and finally
apply the procedure to its arguments (just like you did for floor_div in the previous

question). However, since and is a special form that short circuits on the first false
argument, we cannot evaluate and expressions the same way we evaluate call expressions.
We need to add special logic for forms that don't always evaluate all the sub-expressions.

Important: To check whether some val is a false value in Scheme, use val is

scheme_f rather than val ==

scheme_t

scheme_f .

True # Scheme's #t

scheme_f = False # Scheme's #f

def eval_and(expressions):

>>> calc_eval(Pair("and",
1

>>> calc_eval(Pair("and",
False

>>> calc_eval(Pair("and",
2

>>> calc_eval(Pair("and",

>>> calc_eval(Pair("and",
2.5

>>> calc_eval(Pair("and",
1

>>> calc_eval(Pair("and",

True

"x*%%* YOUR CODE HERE *#*x"

Use Ok to test your code:

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab10/

Pair(1, nil)))

Pair(False, Pair("1", nil))))

Pair(1, Pair(Pair("//", Pair(5, Pair(2, nil))), nil))))

Pair(Pair('+', Pair(1, Pair(1, nil))), Pair(3, nil))))

Pair(Pair('-"', Pair(1, Pair(@, nil))), Pair(Pair('/', Pair(!

Pair(0, Pair(1, nil))))

nil))

6/9

7/1/24, 8:22 AM Lab 10: Interpreters | CS 61A Spring 2024

python3 ok -q eval_and 90

Q4: Saving Values

Implement a define special form that binds values to symbols. This should work like define
in Scheme: (define <symbol> <expression>) first evaluates the expression, then binds the
symbol to its value. The whole define expression evaluates to the symbol .

calc> (define a 1)
a

calc> a

1

This is a more involved change. Here are the 4 steps involved:

1. Add a bindings dictionary that will store the symbols and correspondings values (done
for you).
2. Identify when the define form is given to calc_eval (done for you).

w

. Allow symbols bound to values to be looked up in calc_eval .
4. Write the function eval_define which should add symbols and values to the bindings
dictionary.

bindings = {3}
def eval_define(expressions):

>>> eval_define(Pair("a", Pair(1, nil)))

a
>>> eval_define(Pair("b", Pair(3, nil)))
Ibl

>>> eval_define(Pair("c", Pair("a", nil)))
|C|

>>> calc_eval("c")
>>> calc_eval(Pair("define", Pair("d", Pair("//", nil))))

>>> calc_eval(Pair("d", Pair(4, Pair(2, nil))))

"%*%x%* YOUR CODE HERE #**%"
Use Ok to test your code:

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab10/ 7/9

7/1/24, 8:22 AM Lab 10: Interpreters | CS 61A Spring 2024

python3 ok -q eval_define 90

Check Your Score Locally

You can locally check your score on each question of this assignment by running
python3 ok --score

This does NOT submit the assignment! When you are satisfied with your score, submit the
assignment to Gradescope to receive credit for it.

Submit

Submit this assignment by uploading any files you've edited to the appropriate Gradescope
assignment. Lab 00 (https://cs61a.org/lab/lab00/#submit-with-gradescope) has detailed
instructions.

In addition, all students who are not in the mega lab must complete this attendance form
(https://go.cs61a.org/lab-att). Submit this form each week, whether you attend lab or missed
it for a good reason. The attendance form is not required for mega section students.

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab10/ 8/9

7/1/24, 8:22 AM Lab 10: Interpreters | CS 61A Spring 2024

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab10/ 9/9

