7/1/24, 8:39 AM Lab 11: Programs as Data, Macros | CS 61A Spring 2024

Lab 11: Programs as Data, Macros
[lab11.zip (lab11.zip)]

Due by 11:59pm on Wednesday, April 17.

Starter Files

Download lab11.zip (lab11.zip). Inside the archive, you will find starter files for the questions in
this lab, along with a copy of the Ok (ok) autograder.

Required Questions

[Getting Started Videos]

Quasiquotation

Consult the drop-down if you need a refresher on quasiquotation. It's okay to skip directly to
the questions and refer back here should you get stuck.

[Quasiquotation

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab11/ 1/6

7/1/24, 8:39 AM Lab 11: Programs as Data, Macros | CS 61A Spring 2024

Q1: WWSD: Quasiquote

Use Ok to test your knowledge with the following "What Would Scheme Display?"
questions:

python3 ok -q wwsd-quasiquote -u

sem> '(1 x 3)

scm> (define x 2)
sem> (1 x 3)

sem> (1 ,x 3)

sem> (1 x ,3)

scm> (1 (,x) 3)
sem> (1 ,(+ x 2) 3)
scm> (define y 3)
sem> “(x ,(xy x) y)

scm> ‘(1 ,(cons x (list y 4)) 5)

Programs as Data

Consult the drop-down if you need a refresher on Programs as Data. It's okay to skip directly
to the questions and refer back here should you get stuck.

Programs as Data

Q2: If Program

In Scheme, the if special form allows us to evaluate one of two expressions based on a
predicate. Write a program if-program that takes in the following parameters:

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab11/ 2/6

7/1/24, 8:39 AM Lab 11: Programs as Data, Macros | CS 61A Spring 2024
1. predicate : a quoted expression which will evaluate to the condition in our if -
expression
2. if-true : a quoted expression which will evaluate to the value we want to return if
predicate evaluates to true (#t)
3. if-false :a quoted expression which will evaluate to the value we want to return if
predicate evaluates to false (#f)

The program returns a Scheme list that represents an if expression in the form: (if
<predicate> <if-true> <if-false>) . Evaluating this expression returns the result of evaluating
this if expression.

Here are some doctests to show this:

scm> (define x 1)

scm> (if-program '(= 0 0) '(+ x 1) 'x)

(f (=0 0) (+ x 1) x)

scm> (eval (if-program '(=0 0) '(+ x 1) 'x))

2

scm> (if-program '(= 1 @) '(print 3) '(print 5))

(if (=1 0) (print 3) (print 5))

scm> (eval (if-program '(= 1 0) '(print 3) '(print 5)))
5

(define (if-program condition if-true if-false)
"YOUR-CODE-HERE

Use Ok to test your code:

python3 ok -q if-program 90

Q3: Exponential Powers

Implement a procedure (pow-expr base exp) that returns an expression that, when
evaluated, raises the number base to the power of the nonnegative integer exp. The body of
pow-expr should not perform any multiplication (or exponentiation). Instead, it should just
construct an expression containing only the symbols square and * as well as the number
base and parentheses. The length of this expression should grow logarithmically with
respect to exp, rather than linearly.

Examples:

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab11/ 3/6

7/1/24, 8:39 AM Lab 11: Programs as Data, Macros | CS 61A Spring 2024

scm> (pow-expr 2 0)

1

scm> (pow-expr 2 1)

(x 2 1)

scm> (pow-expr 2 5)

(x 2 (square (square (x 2 1))))

scm> (pow-expr 2 15)

(x 2 (square (x 2 (square (x 2 (square (*x 2 1)))))))
scm> (pow-expr 2 16)

(square (square (square (square (x 2 1)))))
scm> (eval (pow-expr 2 16))

65536

Hint:

1. x%Y = (xY)2
2. X = x(x¥)?

For example, 276 = (28)2 and 277 = 2 * (28)2,

You may use the built-in predicates even? and odd?. Also, the square procedure is
defined for you.

Here's the solution to a similar homework problem (https://cs61a.org/hw/sol-hwO07/#q1-pow).
(define (square n) (* n n))

(define (pow-expr base exp)
"YOUR-CODE -HERE

Use Ok to test your code:

python3 ok -g pow Qo

Macros

A macro is a code transformation that is created using define-macro and applied using a call
expression. A macro call is evaluated by:

1. Binding the formal paramters of the macro to the unevaluated operand expressions of
the macro call.
2. Evaluating the body of the macro, which returns an expression.

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab11/ 4/6

7/1/24, 8:39 AM Lab 11: Programs as Data, Macros | CS 61A Spring 2024
3. Evaluating the expression returned by the macro in the frame of the original macro call.

scm> (define-macro (twice expr) (list 'begin expr expr))

twice

scm> (twice (+ 2 2)) ; evaluates (begin (+ 2 2) (+ 2 2))

4

scm> (twice (print (+ 2 2))) ; evaluates (begin (print (+ 2 2)) (print (+ 2 2)))
4

4

Q4: Repeat

Define repeat, a macro that is called on a number n and an expression expr. Calling it
evaluates expr in a local frame n times, and its value is the final result. You will find the
helper function repeated-call useful, which takes a number n and a zero-argument
procedure f and calls f n times.

For example, (repeat (+ 2 3) (print 1)) is equivalent to:
(repeated-call (+ 2 3) (lambda () (print 1)))

and should evaluate (print 1) repeatedly 5 times.

The following expression should print four four times:
(repeat 2 (repeat 2 (print 'four)))

(define-macro (repeat n expr)
‘(repeated-call ,n ___))

; Call zero-argument procedure f n times and return the final result.
(define (repeated-call n f)
(if (=n 1) ___ (begin

Use Ok to test your code:

python3 ok -g repeat-lambda 90

[Hint: repeat] [Hint: repeated-call

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab11/ 5/6

7/1/24, 8:39 AM Lab 11: Programs as Data, Macros | CS 61A Spring 2024

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab11/ 6/6

