7/1/24, 5:02 AM

CoMPoSING PRoGRAMS

Chapter 1
Hide contents

1.1 Getting Started

1.1.1 Programming in Python
1.1.2 Installing Python 3
1.1.3 Interactive Sessions
1.1.4 First Example

1.1.5 Errors

1.2 Elements of Programming

1.2.1 Expressions

1.2.2 Call Expressions

1.2.3 Importing Library Functions
1.2.4 Names and the
Environment

1.2.5 Evaluating Nested
Expressions

1.2.6 The Non-Pure Print
Function

1.3 Defining New Functions

1.3.1 Environments

1.3.2 Calling User-Defined
Functions

1.3.3 Example: Calling a User-
Defined Function

1.3.4 Local Names

1.3.5 Choosing Names

1.3.6 Functions as Abstractions
1.3.7 Operators

1.4 Designing Functions

1.4.1 Documentation
1.4.2 Default Argument Values

1.5 Control

1.5.1 Statements

1.5.2 Compound Statements
1.5.3 Defining Functions II: Local
Assignment

1.5.4 Conditional Statements
1.5.5 lteration

1.5.6 Testing

1.6 Higher-Order Functions

1.6.1 Functions as Arguments
1.6.2 Functions as General
Methods

1.6.3 Defining Functions IlI:
Nested Definitions

1.6.4 Functions as Returned
Values

1.6.5 Example: Newton's Method
1.6.6 Currying

1.6.7 Lambda Expressions

1.6.8 Abstractions and First-Class
Functions

1.6.9 Function Decorators

1.6 Higher-Order Functions

TEXT PROJECTS TUTOR ABOUT

1.6 Higher-Order Functions

Video: Show Hide

We have seen that functions are a method of abstraction that describe compound operations
independent of the particular values of their arguments. That is, in square,

>>> def square(x):
return x * x

we are not talking about the square of a particular number, but rather about a method for obtaining
the square of any number. Of course, we could get along without ever defining this function, by
always writing expressions such as

>>> 3 * 3
9
>»> 5 %5
25

and never mentioning square explicitly. This practice would suffice for simple computations such as
square, but would become arduous for more complex examples such as abs or fib. In general, lacking
function definition would put us at the disadvantage of forcing us to work always at the level of the
particular operations that happen to be primitives in the language (multiplication, in this case) rather
than in terms of higher-level operations. Our programs would be able to compute squares, but our
language would lack the ability to express the concept of squaring.

One of the things we should demand from a powerful programming language is the ability to build

abstractions by assigning names to common patterns and then to work in terms of the names directly.

Functions provide this ability. As we will see in the following examples, there are common
programming patterns that recur in code, but are used with a number of different functions. These
patterns can also be abstracted, by giving them names.

To express certain general patterns as named concepts, we will need to construct functions that can
accept other functions as arguments or return functions as values. Functions that manipulate
functions are called higher-order functions. This section shows how higher-order functions can serve
as powerful abstraction mechanisms, vastly increasing the expressive power of our language.

1.6.1 Functions as Arguments

Consider the following three functions, which all compute summations. The first, sum_naturals,
computes the sum of natural numbers up to n:

>>> def sum_naturals(n):
total, k =90, 1
while k <= n:
total, k = total + k, k + 1
return total

>>> sum_naturals(100)
5050

The second, sum_cubes, computes the sum of the cubes of natural numbers up to n.

>>> def sum_cubes(n):
total, k =90, 1
while k <= n:
total, k = total + k*k*k, k + 1
return total

>>> sum_cubes(100)
25502500

The third, pi_sum, computes the sum of terms in the series
8 | 8 8 I
1.3" 547 ¥ gepy Y

which converges to pi very slowly.

>>> def pi_sum(n):
total, k =0, 1
while k <= n:

https://www.composingprograms.com/pages/16-higher-order-functions.html

1712

7/1/24, 5:02 AM 1.6 Higher-Order Functions

total, k = total + 8 / ((4*k-3) * (4*k-1)), k + 1
return total
1.7 Recursive Functions
>>> pi_sum(100)
3.1365926848388144

1.7.1 The Anatomy of Recursive
Functions

1.7.2 Mutual Recursion . .
These three functions clearly share a common underlying pattern. They are for the most part

identical, differing only in name and the function of k used to compute the term to be added. We could
generate each of the functions by filling in slots in the same template:

1.7.3 Printing in Recursive
Functions
1.7.4 Tree Recursion
1.7.5 Example: Partitions def <name>(n):

total, k =90, 1

while k <= n:

total, k = total + <term>(k), k + 1
return total

The presence of such a common pattern is strong evidence that there is a useful abstraction waiting
to be brought to the surface. Each of these functions is a summation of terms. As program designers,
we would like our language to be powerful enough so that we can write a function that expresses the
concept of summation itself rather than only functions that compute particular sums. We can do so
readily in Python by taking the common template shown above and transforming the "slots" into
formal parameters:

In the example below, summation takes as its two arguments the upper bound n together with the
function term that computes the kth term. We can use summation just as we would any function, and it
expresses summations succinctly. Take the time to step through this example, and notice how binding
cube to the local names term ensures that the result 1*1*1 + 2%2%2 + 3*3*3 = 36 is computed correctly.
In this example, frames which are no longer needed are removed to save space.

1 def summation(n, term): Global ./——>'Func summation(n, term)
: total, =0, 1 summation L/_\'Func cube(x)
3 while k <= n: cube L
4 total, k = total + term(k), k + 1 sum_cubes L func sun_cubes(n)
5 return total
6
7 def cube(x):
8 return x*x*x
9
10 def sum_cubes(n):
11 return summation(n, cube)
12

» 13 result = sum_cubes(3)

Edit code in Online Python Tutor

0

line that has just executed
» next line to execute

Using an identity function that returns its argument, we can also sum natural numbers using exactly
the same summation function.

>>> def summation(n, term):
total, k =90, 1
while k <= n:
total, k = total + term(k), k + 1
return total

>>> def identity(x):
return x

>>> def sum_naturals(n):
return summation(n, identity)

>>> sum_naturals(10)
55

The summation function can also be called directly, without definining another function for a specific
sequence.

>>> summation(1@, square)
385

https://www.composingprograms.com/pages/16-higher-order-functions.html 2/12

7/1/24, 5:02 AM 1.6 Higher-Order Functions

We can define pi_sum using our summation abstraction by defining a function pi_term to compute each
term. We pass the argument 1es, a shorthand for 1 * 1876 = 1eeeeee, to generate a close
approximation to pi.

>>> def pi_term(x):
return 8 / ((4*x-3) * (4*x-1))

>>> def pi_sum(n):
return summation(n, pi_term)

>>> pi_sum(1le6)
3.141592153589902

1.6.2 Functions as General Methods

Video: Show Hide

We introduced user-defined functions as a mechanism for abstracting patterns of numerical
operations so as to make them independent of the particular numbers involved. With higher-order
functions, we begin to see a more powerful kind of abstraction: some functions express general
methods of computation, independent of the particular functions they call.

Despite this conceptual extension of what a function means, our environment model of how to
evaluate a call expression extends gracefully to the case of higher-order functions, without change.
When a user-defined function is applied to some arguments, the formal parameters are bound to the
values of those arguments (which may be functions) in a new local frame.

Consider the following example, which implements a general method for iterative improvement and
uses it to compute the golden ratio. The golden ratio, often called "phi", is a number near 1.6 that
appears frequently in nature, art, and architecture.

An iterative improvement algorithm begins with a guess of a solution to an equation. It repeatedly
applies an update function to improve that guess, and applies a close comparison to check whether
the current guess is "close enough" to be considered correct.

>>> def improve(update, close, guess=1):
while not close(guess):
guess = update(guess)
return guess

This improve function is a general expression of repetitive refinement. It doesn't specify what problem
is being solved: those details are left to the update and close functions passed in as arguments.

Among the well-known properties of the golden ratio are that it can be computed by repeatedly
summing the inverse of any positive number with 1, and that it is one less than its square. We can
express these properties as functions to be used with improve.

>>> def golden_update(guess):
return 1/guess + 1

>>> def square_close_to_successor(guess):
return approx_eq(guess * guess, guess + 1)

Above, we introduce a call to approx_eq that is meant to return True if its arguments are approximately
equal to each other. To implement, approx_eq, we can compare the absolute value of the difference
between two numbers to a small tolerance value.

>>> def approx_eq(x, y, tolerance=le-15):
return abs(x - y) < tolerance

Calling improve with the arguments golden_update and square_close_to_successor Will compute a finite
approximation to the golden ratio.

>>> improve(golden_update, square_close_to_successor)
1.6180339887498951

By tracing through the steps of evaluation, we can see how this result is computed. First, a local
frame for improve is constructed with bindings for update, close, and guess. In the body of improve, the
name close is bound to square_close_to_successor, which is called on the initial value of guess. Trace
through the rest of the steps to see the computational process that evolves to compute the golden
ratio.

https://www.composingprograms.com/pages/16-higher-order-functions.html 3/12

7/1/24, 5:02 AM

1.6 Higher-Order Functions

1 def improve(update, close, guess=1): Global /
> 2 while not close(guess): improve L

3 guess = update(guess) golden_update L

4 return guess

s square_close_to_successor L

6 def golden_update(guess): approx_eq L

7 return 1/guess + 1

8 improve

9 def square_close_to_successor(guess): update L

*

10 return approx_eq(guess guess, close L

11 guess + 1) 1

1 guess L

13 def approx_eq(x, y, tolerance=le-3):

14 return abs(x - y) < tolerance

15

16 phi = improve(golden_update,

17 square_close_to_successor)

Edit code in Online Python Tutor

)

line that has just executed
» next line to execute

This example illustrates two related big ideas in computer science. First, naming and functions allow
us to abstract away a vast amount of complexity. While each function definition has been trivial, the
computational process set in motion by our evaluation procedure is quite intricate. Second, it is only
by virtue of the fact that we have an extremely general evaluation procedure for the Python language
that small components can be composed into complex processes. Understanding the procedure of
interpreting programs allows us to validate and inspect the process we have created.

As always, our new general method improve needs a test to check its correctness. The golden ratio
can provide such a test, because it also has an exact closed-form solution, which we can compare to
this iterative result.

>>> from math import sqrt
>>> phi = 1/2 + sqrt(5)/2
>>> def improve_test():
approx_phi = improve(golden_update, square_close_to_successor)
assert approx_eq(phi, approx_phi), 'phi differs from its approximation’

>>> improve_test()

For this test, no news is good news: improve_test returns none after its assert statement is executed
successfully.

1.6.3 Defining Functions Ill: Nested Definitions

The above examples demonstrate how the ability to pass functions as arguments significantly
enhances the expressive power of our programming language. Each general concept or equation
maps onto its own short function. One negative consequence of this approach is that the global frame
becomes cluttered with names of small functions, which must all be unique. Another problem is that
we are constrained by particular function signatures: the update argument to improve must take exactly
one argument. Nested function definitions address both of these problems, but require us to enrich
our environment model.

Let's consider a new problem: computing the square root of a number. In programming languages,
"square root" is often abbreviated as sqrt. Repeated application of the following update converges to
the square root of a:

>>> def average(x, y):
return (x + y)/2

>>> def sqrt_update(x, a):
return average(x, a/x)

This two-argument update function is incompatible with improve (it takes two arguments, not one), and
it provides only a single update, while we really care about taking square roots by repeated updates.
The solution to both of these issues is to place function definitions inside the body of other definitions.

https://www.composingprograms.com/pages/16-higher-order-functions.html

func

func

func

func

improve(upda

golden_updat

square_close

approx_eq(x,

4/12

7/1/24, 5:02 AM

1.6 Higher-Order Functions

>>> def sqrt(a):
def sqrt_update(x):
return average(x, a/x)
def sqrt_close(x):
return approx_eq(x * x, a)
return improve(sqrt_update, sqrt_close)

Like local assignment, local def statements only affect the current local frame. These functions are
only in scope while sqrt is being evaluated. Consistent with our evaluation procedure, these local def

statements don't even get evaluated until sqrt is called.

Lexical scope. Locally defined functions also have access to the name bindings in the scope in
which they are defined. In this example, sqrt_update refers to the name a, which is a formal parameter
of its enclosing function sqrt. This discipline of sharing names among nested definitions is called
lexical scoping. Critically, the inner functions have access to the names in the environment where

they are defined (not where they are called).

We require two extensions to our environment model to enable lexical scoping.

1. Each user-defined function has a parent environment: the environment in which it was defined.
2. When a user-defined function is called, its local frame extends its parent environment.

Previous to sqrt, all functions were defined in the global environment, and so they all had the same
parent: the global environment. By contrast, when Python evaluates the first two clauses of sqrt, it

create functions that are associated with a local environment. In the call

>>> sqrt(256)
16.0

the environment first adds a local frame for sqrt and evaluates the def statements for sqrt_update and

sqrt_close.
1 def average(x, y): = Global
2 return (x + y)/2
3
4 def improve(update, close, guess=1):
5 while not close(guess):
6 guess = update(guess)
7 return guess
8
9 def approx_eq(x, y, tolerance=le-3):
10 return abs(x - y) < tolerance sqrt_update L___
11
12 def sqgrt(a): sqrt_close L——-
13 def sqrt_update(x):
14 return average(x, a/x)
15 def sqrt_close(x):
16 return approx_eq(x * x, a)
> 17 return improve(sqrt_update, sqrt_close)
18 e

Edit code in Online Python Tutor

line that has just executed
P next line to execute

Function values each have a new annotation that we will include in environment diagrams from now
on, a parent. The parent of a function value is the first frame of the environment in which that function
was defined. Functions without parent annotations were defined in the global environment. When a
user-defined function is called, the frame created has the same parent as that function.

Subsequently, the name sqrt_update resolves to this newly defined function, which is passed as an
argument to improve. Within the body of improve, we must apply our update function (bound to
sqrt_update) to the initial guess x of 1. This final application creates an environment for sqrt_update
that begins with a local frame containing only x, but with the parent frame sqrt still containing &

binding for a.

https://www.composingprograms.com/pages/16-higher-order-functions.html

approx_eq L

f1: sgrt [parent=Global]

func

func

func

func

func

func

average(x,

improve (upc

approx_eq(>

sqrt(a) [pe

sqrt_update

sqrt_closel

5/12

7/1/24, 5:02 AM 1.6 Higher-Order Functions

a

1 def average(x, y): Global func
2 return (x + y)/2 average L
3 func
improve L
4 def improve(update, close, guess=1):
: approx_eq L_ func
5 while not close(guess):
6 guess = update(guess) sqrt L func
7 return guess
8 fl: sqrt [parent=Global] func
9 def approx_eq(x, y, tolerance=le-3): a |256
10 return abs(x - y) < tolerance func
sqrt_update
" t_cl
12 def sqrt(a): sart_close \—
13 def sqrt_update(x):
» 14 return average(x, a/x) f2: improve [parent=Global]
15 def sqrt_close(x): update L_
16 return approx_eq(x * x, a) close L_
17 return improve(sqrt_update, sqrt_close) B guess L£
1R
Edit code in Online Python Tutor
[] f5: sqrt_update [parent=f1]
o
Step 15 of 86
line that has just executed
» next line to execute
The most critical part of this evaluation procedure is the transfer of the parent for sqrt_update to the
frame created by calling sqrt_update. This frame is also annotated with [parent=F1].
Extended Environments. An environment can consist of an arbitrarily long chain of frames, which
always concludes with the global frame. Previous to this sqrt example, environments had at most two
frames: a local frame and the global frame. By calling functions that were defined within other
functions, via nested def statements, we can create longer chains. The environment for this call to
sqrt_update consists of three frames: the local sqrt_update frame, the sqrt frame in which sqrt_update
was defined (labeled f1), and the global frame.
The return expression in the body of sqrt_update can resolve a value for a by following this chain of
frames. Looking up a name finds the first value bound to that name in the current environment.
Python checks first in the sqrt_update frame -- no a exists. Python checks next in the parent frame, f1,
and finds a binding for a to 256.
Hence, we realize two key advantages of lexical scoping in Python.
« The names of a local function do not interfere with names external to the function in which it is
defined, because the local function name will be bound in the current local environment in which
it was defined, rather than the global environment.
» Alocal function can access the environment of the enclosing function, because the body of the
local function is evaluated in an environment that extends the evaluation environment in which it
was defined.
The sqrt_update function carries with it some data: the value for a referenced in the environment in
which it was defined. Because they "enclose" information in this way, locally defined functions are
often called closures.
1.6.4 Functions as Returned Values
Video: Show Hide
We can achieve even more expressive power in our programs by creating functions whose returned
values are themselves functions. An important feature of lexically scoped programming languages is
that locally defined functions maintain their parent environment when they are returned. The following
example illustrates the utility of this feature.
Once many simple functions are defined, function composition is a natural method of combination { >
include in our programming language. That is, given two functions f(x) and g(x), we might want to
define h(x) = f(g(x)). We can define function composition using our existing tools: >
1
>>> def composel(f, g): ™
def h(x): 77
return f(g(x)) \

return h

https://www.composingprograms.com/pages/16-higher-order-functions.html

average|(

improve(

approx_e¢

sqrt(a)

sqrt_upc

sqrt_clc

6/12

7/1/24, 5:02 AM

1.6 Higher-Order Functions

The environment diagram for this example shows how the names f and g are resolved correctly, even
in the presence of conflicting names.

1 def square(x): Global

2 return x * x square _
3 successor _
4 def successor(x):

5 return x + 1 composel _
6 f _
7 def composel(f, g): square_successor _
8 def h(x): result \1_69
9 return f(g(x))

10 return h f1: composel [parent=Global]
11

12 def £(x): L
13 """Never called.""" 9 L
14 return -x h L
15 Return
16 square_successor = composel(square, successor) value L

17 result = square_successor(12)

f2: h [parent=f1]
Edit code in Online Python Tutor

O
x
’T
N

Return
End | Forward > value

line that has just executed
» next line to execute

=
[o)]
o

f3: successor [parent=Global]

x |12
Return \E
value

f4: square [parent=Global]

x 13
Return 169
value

The 1 in composel is meant to signify that the composed functions all take a single argument. This
naming convention is not enforced by the interpreter; the 1 is just part of the function name.

At this point, we begin to observe the benefits of our effort to define precisely the environment model
of computation. No modification to our environment model is required to explain our ability to return
functions in this way.

1.6.5 Example: Newton's Method

Video: Show Hide

This extended example shows how function return values and local definitions can work together to
express general ideas concisely. We will implement an algorithm that is used broadly in machine
learning, scientific computing, hardware design, and optimization.

Newton's method is a classic iterative approach to finding the arguments of a mathematical function
that yield a return value of 0. These values are called the zeros of the function. Finding a zero of a
function is often equivalent to solving some other problem of interest, such as computing a square
root.

A motivating comment before we proceed: it is easy to take for granted the fact that we know how to
compute square roots. Not just Python, but your phone, web browser, or pocket calculator can do so
for you. However, part of learning computer science is understanding how quantities like these can be
computed, and the general approach presented here is applicable to solving a large class of
equations beyond those built into Python.

Newton's method is an iterative improvement algorithm: it improves a guess of the zero for any
function that is differentiable, which means that it can be approximated by a straight line at any point.
Newton's method follows these linear approximations to find function zeros.

Imagine a line through the point (z, f(z)) that has the same slope as the curve for function f(z) at
that point. Such a line is called the tangent, and its slope is called the derivative of f at x.

https://www.composingprograms.com/pages/16-higher-order-functions.html

func

func

func

func

func

squar

Succe

compc

f£(x)

h(x)

712

7/1/24, 5:02 AM

1.6 Higher-Order Functions

This line's slope is the ratio of the change in function value to the change in function argument.
Hence, translating z by f(a:) divided by the slope will give the argument value at which this tangent
line touches 0.

10

A newton_update expresses the computational process of following this tangent line to 0, for a function
f and its derivative df.

>>> def newton_update(f, df):
def update(x):
return x - f(x) / df(x)
return update

Finally, we can define the find_root function in terms of newton_update, our improve algorithm, and a
comparison to see if f() is near 0.

>>> def find_zero(f, df):
def near_zero(x):
return approx_eq(f(x), ©)
return improve(newton_update(f, df), near_zero)

Computing Roots. Using Newton's method, we can compute roots of arbitrary degree n. The degree
n rootof ais suchthatx - - x...x = a with = repeated n times. For example,

o The square (second) root of 64 is 8, because 8 - 8 = 64.
e The cube (third) root of 64 is 4, because 4 - 4 - 4 = 64.
e The sixth root of 64 is 2, because 2-2-2-2-2 -2 = 64.

We can compute roots using Newton's method with the following observations:

« The square root of 64 (written 1/64) is the value z such that 2 — 64 = 0
« More generally, the degree n root of a (written v/a) is the value such that 2" —a = 0

If we can find a zero of this last equation, then we can compute degree 1 roots. By plotting the curves
for n equal to 2, 3, and 6 and a equal to 64, we can visualize this relationship.

A 10 V64 | |{‘/ﬁ\\/) \/ﬁ/

Video: Show Hide

We first implement square_root by defining f and its derivative df. We use from calculus the fact that
the derivative of f(z) = z? — a is the linear function df(z) = 2z.

>>> def square_root_newton(a):
def f(x):
return x * x - a
def df(x):
return 2 * x
return find_zero(f, df)

https://www.composingprograms.com/pages/16-higher-order-functions.html

8/12

7/1/24, 5:02 AM

1.6 Higher-Order Functions

>>> square_root_newton(64)
8.0

Generalizing to roots of arbitrary degree 1z, we compute f(:c) = x™ — a and its derivative
df(z) =n-2" '

>>> def power(x, n):
"""Return x * x * x * ... * x for x repeated n times.
product, k = 1, @
while k < n:
product, k = product * x, k + 1
return product

won

>>> def nth_root_of_a(n, a):
def f(x):
return power(x, n) - a
def df(x):
return n * power(x, n-1)
return find_zero(f, df)

>>> nth_root_of_a(2, 64)
8.0
>>> nth_root_of_a(3, 64)
4.0
>>> nth_root_of_a(6, 64)
2.0

The approximation error in all of these computations can be reduced by changing the tolerance in
approx_eq to a smaller number.

As you experiment with Newton's method, be aware that it will not always converge. The initial guess
of improve must be sufficiently close to the zero, and various conditions about the function must be
met. Despite this shortcoming, Newton's method is a powerful general computational method for
solving differentiable equations. Very fast algorithms for logarithms and large integer division employ
variants of the technique in modern computers.

1.6.6 Currying

Video: Show Hide

We can use higher-order functions to convert a function that takes multiple arguments into a chain of
functions that each take a single argument. More specifically, given a function f(x, y), we can define
a function g such that g(x) (y) is equivalent to f(x, y). Here, g is a higher-order function that takes in a
single argument x and returns another function that takes in a single argument y. This transformation
is called currying.

As an example, we can define a curried version of the pow function:

>>> def curried_pow(x):
def h(y):
return pow(x, y)
return h

>>> curried_pow(2)(3)
8

Some programming languages, such as Haskell, only allow functions that take a single argument, so
the programmer must curry all multi-argument procedures. In more general languages such as
Python, currying is useful when we require a function that takes in only a single argument. For
example, the map pattern applies a single-argument function to a sequence of values. In later
chapters, we will see more general examples of the map pattern, but for now, we can implement the
pattern in a function:

>>> def map_to_range(start, end, f):
while start < end:
print(f(start))
start = start + 1

We can use map_to_range and curried_pow to compute the first ten powers of two, rather than
specifically writing a function to do so:

>>> map_to_range(@, 10, curried_pow(2))
1
2
4
8
16
32

https://www.composingprograms.com/pages/16-higher-order-functions.html 9/12

7/1/24, 5:02 AM

1.6 Higher-Order Functions

64

128
256
512

We can similarly use the same two functions to compute powers of other numbers. Currying allows us
to do so without writing a specific function for each number whose powers we wish to compute.

In the above examples, we manually performed the currying transformation on the pow function to
obtain curried_pow. Instead, we can define functions to automate currying, as well as the inverse
uncurrying transformation:

>>> def curry2(f):
"""Return a curried version of the given two-argument function."""
def g(x):
def h(y):
return f(x, y)
return h
return g

-+

>>> def uncurry2(g):
"""Return a two-argument version of the given curried function.
def f(x, y):

return g(x)(y)

return f

>>> pow_curried = curry2(pow)
>>> pow_curried(2)(5)

32

>>> map_to_range(@, 10, pow_curried(2))
1

2

4

8

16

32

64

128

256

512

The curry2 function takes in a two-argument function f and returns a single-argument function g.
When g is applied to an argument x, it returns a single-argument function h. When h is applied to y, it
calls f(x, y). Thus, curry2(f)(x)(y) is equivalent to f(x, y). The uncurry2 function reverses the
currying transformation, so that uncurry2(curry2(f)) is equivalent to f.

>>> uncurry2(pow_curried) (2, 5)
32

1.6.7 Lambda Expressions

Video: Show Hide

So far, each time we have wanted to define a new function, we needed to give it a name. But for other
types of expressions, we don't need to associate intermediate values with a name. That is, we can
compute a*b + c*d without having to name the subexpressions a*b or c*d, or the full expression. In
Python, we can create function values on the fly using 1ambda expressions, which evaluate to
unnamed functions. A lambda expression evaluates to a function that has a single return expression
as its body. Assignment and control statements are not allowed.

>>> def composel(f, g):
return lambda x: f(g(x))

We can understand the structure of a 1ambda expression by constructing a corr'e/sparrmﬁ’English
sentence:

lambda X : f(g(x))
"A function that takes x and returns f(g(x))"

The result of a lambda expression is called a lambda function. It has no intrinsic name @d so Python
prints <lambda> for the name), but otherwise it behaves like any other function.

>>> s = lambda x: X * x

>>> s

<function <lambda> at oxf3f490>
>>> s(12)

144

https://www.composingprograms.com/pages/16-higher-order-functions.html

10/12

7/1/24, 5:02 AM

1.6 Higher-Order Functions

In an environment diagram, the result of a lambda expression is a function as well, named with the
greek letter A (lambda). Our compose example can be expressed quite compactly with lambda
expressions.

1 def composel(f, g): Global func composel(f, g) [parent=(

2 return lambda x: f(g(x)) composel

3 func A(x) <line 4> [parent=G:
A

4 f = composel(lambda x: x * x, result |169 func A(y) <line 5> [parent=G.

5 lambda y: y + 1)

6 result = f(12) func A(x) <line 2> [parent=f:

f1: composel [parent=Global]
Edit code in Online Python Tutor f

0 g
End | Forward > Return

value

 r

line that has just executed

P next line to execute
f2: N <line 2> [parent=f1]

X (12

5

Return
value

—-
(o)

6

f3: A <line 5> [parent=Global]

v [12
Return E
value

f4: N <line 4> [parent=Global]

x |13
Return 169
value

Some programmers find that using unnamed functions from lambda expressions to be shorter and
more direct. However, compound lambda expressions are notoriously illegible, despite their brevity.
The following definition is correct, but many programmers have trouble understanding it quickly.

>>> composel = lambda f,g: lambda x: f(g(x))

In general, Python style prefers explicit def statements to lambda expressions, but allows them in
cases where a simple function is needed as an argument or return value.

Such stylistic rules are merely guidelines; you can program any way you wish. However, as you write
programs, think about the audience of people who might read your program one day. When you can
make your program easier to understand, you do those people a favor.

The term lambda is a historical accident resulting from the incompatibility of written mathematical
notation and the constraints of early type-setting systems.

It may seem perverse to use lambda to introduce a procedure/function. The notation goes
back to Alonzo Church, who in the 1930's started with a "hat" symbol; he wrote the square
function as "y . y x y". But frustrated typographers moved the hat to the left of the parameter
and changed it to a capital lambda: "Ay . y x y"; from there the capital lambda was changed to

lowercase, and now we see "Ay .y x y" in math books and (1ambda (y) (* y y)) in Lisp.

—Peter Norvig (norvig.com/lispy2.html)

Despite their unusual etymology, 1ambda expressions and the corresponding formal language for
function application, the lambda calculus, are fundamental computer science concepts shared far
beyond the Python programming community. We will revisit this topic when we study the design of
interpreters in Chapter 3.

1.6.8 Abstractions and First-Class Functions

Video: Show Hide

We began this section with the observation that user-defined functions are a crucial abstraction
mechanism, because they permit us to express general methods of computing as explicit elements in

https://www.composingprograms.com/pages/16-higher-order-functions.html

11/12

7/1/24, 5:02 AM

1.6 Higher-Order Functions

our programming language. Now we've seen how higher-order functions permit us to manipulate
these general methods to create further abstractions.

As programmers, we should be alert to opportunities to identify the underlying abstractions in our
programs, build upon them, and generalize them to create more powerful abstractions. This is not to
say that one should always write programs in the most abstract way possible; expert programmers
know how to choose the level of abstraction appropriate to their task. But it is important to be able to
think in terms of these abstractions, so that we can be ready to apply them in new contexts. The
significance of higher-order functions is that they enable us to represent these abstractions explicitly
as elements in our programming language, so that they can be handled just like other computational
elements.

In general, programming languages impose restrictions on the ways in which computational elements
can be manipulated. Elements with the fewest restrictions are said to have first-class status. Some of
the "rights and privileges" of first-class elements are:

1. They may be bound to names.

2. They may be passed as arguments to functions.
3. They may be returned as the results of functions.
4. They may be included in data structures.

Python awards functions full first-class status, and the resulting gain in expressive power is
enormous.

1.6.9 Function Decorators

Video: Show Hide

Python provides special syntax to apply higher-order functions as part of executing a def statement,
called a decorator. Perhaps the most common example is a trace.

>>> def trace(fn):
def wrapped(x):
print('-> ", fn, "(', x, ")")
return fn(x)
return wrapped

>>> @trace
def triple(x):
return 3 * x

>>> triple(12)
-> <function triple at ©x102a39848> (12)
36

In this example, A higher-order function trace is defined, which returns a function that precedes a call
to its argument with a print statement that outputs the argument. The def statement for triple has an
annotation, @trace, which affects the execution rule for def. As usual, the function triple is created.
However, the name triple is not bound to this function. Instead, the name triple is bound to the
returned function value of calling trace on the newly defined triple function. In code, this decorator is
equivalent to:

>>> def triple(x):
return 3 * x

>>> triple = trace(triple)

In the projects associated with this text, decorators are used for tracing, as well as selecting which
functions to call when a program is run from the command line.

Extra for experts. The decorator symbol @ may also be followed by a call expression. The expression
following @ is evaluated first (just as the name trace was evaluated above), the def statement second,
and finally the result of evaluating the decorator expression is applied to the newly defined function,
and the result is bound to the name in the def statement. A short tutorial on decorators by Ariel Ortiz
gives further examples for interested students.

Continue: 1.7 Recursive Functions

Composing Programs by John DeNero, based on the textbook Structure and Interpretation of Computer Programs by Harold Abelson and Gerald Jay Sussman, is licensed under a Creative
Commons Attribution-ShareAlike 3.0 Unported License.

https://www.composingprograms.com/pages/16-higher-order-functions.html

1212

