7/1/24, 6:26 AM Homework 2 | CS 61A Spring 2024

Homework 2: Higher-Order Functions
' hw02.zip (hw02.zip) |

Due by 11:59pm on Thursday, February 1

Instructions

Download hwO02.zip (hw02.zip). Inside the archive, you will find a file called hw02.py
(hw02.py), along with a copy of the ok autograder.

Submission: When you are done, submit the assignment by uploading all code files you've
edited to Gradescope. You may submit more than once before the deadline; only the final
submission will be scored. Check that you have successfully submitted your code on
Gradescope. See Lab 0 (/~cs61a/sp24/lab/lab00#task-c-submitting-the-assignment) for more
instructions on submitting assignments.

Using Ok: If you have any questions about using Ok, please refer to this guide.
(/~cs61a/sp24/articles/using-ok)

Readings: You might find the following references useful:

e Section 1.6 (https:/www.composingprograms.com/pages/16-higher-order-
functions.html)

Grading: Homework is graded based on correctness. Each incorrect problem will decrease
the total score by one point. This homework is out of 2 points.

Required Questions

[Getting Started Videos]

Several doctests refer to these functions:

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw02/ 117

7/1/24, 6:26 AM Homework 2 | CS 61A Spring 2024

from operator import add, mul
square = lambda x: x * X
identity = lambda x: x

triple = lambda x: 3 * x

increment = lambda x: x + 1

Higher-Order Functions

Q1: Product

Write a function called product that returns the product of the first n terms of a sequence.
Specifically, product takes in an integer n and term, a single-argument function that
determines a sequence. (That is, term(i) gives the i th term of the sequence.) product(n,
term) should return term(1) * ... x term(n).

def product(n, term):
"""Return the product of the first n terms in a sequence.

n: a positive integer
term: a function that takes one argument to produce the term

>>> product(3, identity) # 1 % 2 % 3

6

>>> product(5, identity) # 1 x 2 % 3 x 4 x5

120

>>> product(3, square) # 172 % 242 % 372

36

>>> product(5, square) # 142 % 242 % 342 % 4*2 x 5*2
14400

>>> product(3, increment) # (1+1) * (2+1) * (3+1)
24

>>> product(3, triple) # 1%3 % 2x3 x 3%3

162

"xx% YOUR CODE HERE *xx"

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw02/ 2/7

7/1/24, 6:26 AM Homework 2 | CS 61A Spring 2024
Use Ok to test your code:

python3 ok -q product %

Q2: Accumulate

Let's take a look at how product is an instance of a more general function called accumulate,
which we would like to implement:

def accumulate(fuse, start, n, term):
"""Return the result of fusing together the first n terms in a sequence
and start. The terms to be fused are term(1), term(2), ..., term(n).
The function fuse is a two-argument commutative & associative function.

>>> accumulate(add, @, 5, identity) # 0 + 1 + 2 + 3 + 4 + 5
15

>>> accumulate(add, 11, 5, identity) # 11 +1 + 2 + 3 + 4 + 5
26

>>> accumulate(add, 11, 0, identity) # 11 (fuse is never used)
11

>>> accumulate(add, 11, 3, square) # 11 + 172 + 242 + 372
25

>>> accumulate(mul, 2, 3, square) # 2 % 172 x 2%2 % 3*2

72

S>> # 2+ (172 + 1) + (222 + 1) + (3*2 + 1)

>>> accumulate(lambda x, y: x +y + 1, 2, 3, square)

19

"x%x% YOUR CODE HERE **x"

accumulate has the following parameters:

e fuse: a two-argument function that specifies how the current term is fused with the
previously accumulated terms

e start: value at which to start the accumulation

e n:anon-negative integer indicating the number of terms to fuse

e term: a single-argument function; term(i) is the i th term of the sequence

Implement accumulate, which fuses the first n terms of the sequence defined by term with
the start value using the fuse function.

For example, the result of accumulate(add, 11, 3, square) is

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw02/ 3/7

7/1/24, 6:26 AM Homework 2 | CS 61A Spring 2024

add(11, add(square(1), add(square(2), square(3))))
11 + square(1) + square(2) + square(3)
11 + 1 + 4 + 9 = 25

Assume that fuse is commutative, fuse(a, b) == fuse(b, a), and associative,
fuse(fuse(a, b), c) == fuse(a, fuse(b, c)).

Then, implement summation (from lecture) and product as one-line calls to accumulate.

Important: Both summation_using_accumulate and product_using_accumulate should be
implemented with a single line of code starting with return.

def summation_using_accumulate(n, term):
"""Returns the sum: term(1) + ... + term(n), using accumulate.

>>> summation_using_accumulate(5, square)

55

>>> summation_using_accumulate(5, triple)

45

>>> # This test checks that the body of the function is just a return statement.
>>> import inspect, ast

>>> [type(x).__name__ for x in ast.parse(inspect.getsource(summation_using_accumulate.

['Expr', 'Return']

return ____
def product_using_accumulate(n, term):
"""Returns the product: term(1) * ... * term(n), using accumulate.

>>> product_using_accumulate(4, square)

576

>>> product_using_accumulate(6, triple)

524880

>>> # This test checks that the body of the function is just a return statement.
>>> import inspect, ast

>>> [type(x).__name__ for x in ast.parse(inspect.getsource(product_using_accumulate)).

['Expr', 'Return']

return

Use Ok to test your code:

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw02/

417

7/1/24, 6:26 AM Homework 2 | CS 61A Spring 2024

python3 ok -g accumulate
python3 ok -g summation_using_accumulate
python3 ok -q product_using_accumulate g0

Q3: Make Repeater

Implement the function make_repeater that takes a one-argument function f and a positive
integer n. It returns a one-argument function, where make_repeater(f, n)(x) returns the
value of f(f(...f(x)...)) inwhich f is applied n times to x. For example,
make_repeater(square, 3)(5) squares 5 three times and returns 390625, just like
square(square(square(5))) .

def make_repeater(f, n):
"""Returns the function that computes the nth application of f.

>>> add_three = make_repeater(increment, 3)

>>> add_three(5)

8

>>> make_repeater(triple, 5)(1) # 3 * 3 * 3 x 3 x 3 x 1
243

>>> make_repeater(square, 2)(5) # square(square(5))
625

>>> make_repeater(square, 3)(5) # square(square(square(5)))
390625

"x%x% YOUR CODE HERE *#*x"

Use Ok to test your code:

python3 ok -q make_repeater %

Check Your Score Locally

You can locally check your score on each question of this assignment by running
python3 ok --score

This does NOT submit the assignment! When you are satisfied with your score, submit the
assignment to Gradescope to receive credit for it.

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw02/ 517

7/1/24, 6:26 AM Homework 2 | CS 61A Spring 2024

Submit

Submit this assignment by uploading any files you've edited to the appropriate Gradescope
assignment. Lab 00 (https://cs61a.org/lab/lab00/#submit-with-gradescope) has detailed
instructions.

In addition, all students who are not in the mega lab must complete this attendance form
(https://go.cs61a.org/lab-att). Submit this form each week, whether you attend lab or missed
it for a good reason. The attendance form is not required for mega section students.

Exam Practice

Here are some related questions from past exams for you to try. These are optional. There is
no way to submit them.

Note that exams from Spring 2020, Fall 2020, and Spring 2021 gave students access to
an interpreter, so the question format may be different than other years. Regardless,
the questions below are good problems to try without access to an interpreter.

1. Fall 2019 MT1 Q3: You Again (https://cs61a.org/exam/fal9/mt1/61a-fal9-mtl.pdf#page=4)
[Higher-Order Functions]

2. Spring 2021 MT1 Q4: Domain on the Range (https://cs61a.org/exam/sp21/mt1/61a-sp21-
mtl.pdf#page=14) [Higher-Order Functions]

3. Fall 2021 MT1 Q1b: tik (https://cs61a.org/exam/fa21/mt1/61a-fa21-mtl.pdf#page=4)
[Functions and Expressions]

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw02/ 6/7

7/1/24, 6:26 AM Homework 2 | CS 61A Spring 2024

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw02/ 717

