7/1/24, 6:35 AM Lab 2: Higher-Order Functions, Lambda Expressions | CS 61A Spring 2024

Lab 2: Higher-Order Functions, Lambda
Expressions | lab02.zip (1ab02.zip) |

Due by 11:59pm on Wednesday, January 31.

Starter Files

Download lab02.zip (lab02.zip). Inside the archive, you will find starter files for the questions
in this lab, along with a copy of the Ok (ok) autograder.

Topics

Consult this section if you need a refresher on the material for this lab. It's okay to skip
directly to the questions and refer back here should you get stuck.

~

Short Circuiting } [Higher-Order Functions }

Lambda Expressions] [Environment Diagrams]

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab02/ 114

7/1/24, 6:35 AM Lab 2: Higher-Order Functions, Lambda Expressions | CS 61A Spring 2024

Required Questions

[Getting Started Videos }

What Would Python Display?

Important: For all WWPD questions, type Function if you believe the answer is
<function...>, Error if it errors, and Nothing if nothing is displayed.

Q1: WWPD: The Truth Will Prevail

Use Ok to test your knowledge with the following "What Would Python Display?"
questions:

python3 ok -q short-circuit -u 90

>>> True and 13

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab02/ 2/14

7/1/24, 6:35 AM Lab 2: Higher-Order Functions, Lambda Expressions | CS 61A Spring 2024

>>> True and 1 / 0

>>> print(3) or ""

>>> def f(x):

if x == 0:

return "zero"
elif x > 0:

return "positive"
else:

return ""

>>> 0 or (1)

O
g

: WWPD: Higher-Order Functions

Use Ok to test your knowledge with the following "What Would Python Display?"
questions:

python3 ok -q hof-wwpd -u %

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab02/ 3/14

7/1/24, 6:35 AM Lab 2: Higher-Order Functions, Lambda Expressions | CS 61A Spring 2024

>>> def cake():
print('beets"')
def pie():
print('sweets')
return 'cake'
return pie
>>> chocolate = cake()

>>> more_chocolate, more_cake = chocolate(), cake

>>> def snake(x, y):
if cake == more_cake:
return chocolate
else:
Ce return x + vy
>>> snake(10, 20)

>>> cake = 'cake'
>>> snake(10, 20)

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab02/

414

7/1/24, 6:35 AM Lab 2: Higher-Order Functions, Lambda Expressions | CS 61A Spring 2024

Q3: WWPD: Lambda

Use Ok to test your knowledge with the following "What Would Python Display?"
questions:

python3 ok -q lambda -u %

As a reminder, the following two lines of code will not display any output in the
interactive Python interpreter when executed:

>>> x = None
>>> X
>>>

>>> lambda x: x # A lambda expression with one parameter x

>>> a = lambda x: x # Assigning the lambda function to the name a
>>> a(5)

>>> b = lambda x, y: lambda: x + y # Lambdas can return other lambdas!
>>> ¢ = b(8, 4)

>>> ¢

>>> c()

>>> d = lambda f: f(4) # They can have functions as arguments as well.
>>> def square(x):

return x * x
>>> d(square)

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab02/ 5/14

7/1/24, 6:35 AM Lab 2: Higher-Order Functions, Lambda Expressions | CS 61A Spring 2024

>>> higher_order_lambda = lambda f: lambda x: f(x)
>>> g = lambda x: x * x
>>> higher_order_lambda(2)(g) # Which argument belongs to which function call?

>>> call_thrice = lambda f: lambda x: f(f(f(x)))
>>> call_thrice(lambda y: y + 1)(0)

>>> print_lambda = lambda z: print(z) # When is the return expression of a lambda expres:

>>> print_lambda

= print_lambda(1000)

\4
\A
\4
o
>
0]
|
—+
>
@]
c
w0
Q
=}
o
|

>>> one_thousand # What did the call to print_lambda return?

Coding Practice

Q4: Composite Identity Function

Write a function that takes in two single-argument functions, f and g, and returns another
function that has a single parameter x. The returned function should return True if f(g(x))
is equal to g(f(x)) and False otherwise. You can assume the output of g(x) is a valid input
for f and vice versa.

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab02/ 6/14

7/1/24, 6:35 AM Lab 2: Higher-Order Functions, Lambda Expressions | CS 61A Spring 2024

def composite_identity(f, g):
Return a function with one parameter x that returns True if f(g(x)) is
equal to g(f(x)). You can assume the result of g(x) is a valid input for f
and vice versa.

>>> add_one = lambda x: x + 1 # adds one to x

>>> square = lambda x: x#*%2 # squares x [returns x*2]
>>> b1 = composite_identity(square, add_one)

>>> b1(0) # (0 + 1) % 2 == 0 *x 2 + 1
True

>>> b1(4) # (4 + 1) %#x 2 1= 4 %x 2 + 1
False

"xx* YOUR CODE HERE #xx"
Use Ok to test your code:

python3 ok -g composite_identity %

Q5: Count Cond

Consider the following implementations of count_fives and count_primes which use the
sum_digits and is_prime functions from earlier assignments:

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab02/ 7114

7/1/24, 6:35 AM Lab 2: Higher-Order Functions, Lambda Expressions | CS 61A Spring 2024

def

def

count_fives(n):
"""Return the number of values i from 1 to n (including n)
where sum_digits(n * i) is 5.
>>> count_fives(10) # Among 10, 20, 30, ..., 100, only 50 (1@ * 5) has digit sum 5
1
>>> count_fives(50) # 50 (50 * 1), 500 (50 * 10), 1400 (50 * 28), 2300 (50 * 46)
4
i=1
count = 0
while i <= n:

if sum_digits(n x i) ==

count += 1
i+=1

return count

count_primes(n):
"""Return the number of prime numbers up to and including n.
>>> count_primes(6) # 2, 3, 5

3

>>> count_primes(13) # 2, 3, 5, 7, 11, 13
6

i=1

count = 0

while i <= n:
if is_prime(i):
count += 1
i+=1

return count

The implementations look quite similar! Generalize this logic by writing a function
count_cond , which takes in a two-argument predicate function condition(n, i) . count_cond

returns a one-argument function that takes in n, which counts all the numbers from 1to n
that satisfy condition when called.

Note: When we say condition is a predicate function, we mean that it is a function

that will return True or False.

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab02/ 8/14

7/1/24, 6:35 AM Lab 2: Higher-Order Functions, Lambda Expressions | CS 61A Spring 2024

def sum_digits(y):
"""Return the sum of the digits of non-negative integer y.
total = @
while y > 0:
total, y = total +y % 10, y // 10
return total

def is_prime(n):
"""Return whether positive integer n is prime."""
if n ==

return False

k =2
while k < n:
if n% k == 0:
return False
k += 1

return True

def count_cond(condition):
"""Returns a function with one parameter N that counts all the numbers from
1 to N that satisfy the two-argument predicate function Condition, where
the first argument for Condition is N and the second argument is the
number from 1 to N.

>>> count_fives = count_cond(lambda n, i: sum_digits(n * i) == 5)

>>> count_fives(10) # 50 (10 x 5)

1

>>> count_fives(50) # 50 (50 x 1), 500 (50 * 10), 1400 (50 * 28), 2300 (50 * 46)

>>> is_i_prime = lambda n, i: is_prime(i) # need to pass 2-argument function into cout
>>> count_primes = count_cond(is_i_prime)
>>> count_primes(2) # 2

>>> count_primes(3) #2, 3

2

>>> count_primes(4) #2,3

2

>>> count_primes(5) #2,3,5

3

>>> count_primes(20) # 2, 3, 5, 7, 11, 13, 17, 19
8

"x*%%x YOUR CODE HERE *#*x"

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab02/ 9/14

7/1/24, 6:35 AM Lab 2: Higher-Order Functions, Lambda Expressions | CS 61A Spring 2024
Use Ok to test your code:

python3 ok -gq count_cond 90

Check Your Score Locally

You can locally check your score on each question of this assignment by running
python3 ok --score

This does NOT submit the assignment! When you are satisfied with your score, submit the
assignment to Gradescope to receive credit for it.

Submit

Submit this assignment by uploading any files you've edited to the appropriate Gradescope
assignment. Lab 00 (https://cs61a.org/lab/lab00/#submit-with-gradescope) has detailed
instructions.

In addition, all students who are not in the mega lab must complete this attendance form
(https://go.cs61a.org/lab-att). Submit this form each week, whether you attend lab or missed
it for a good reason. The attendance form is not required for mega section students.

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab02/ 10/14

7/1/24, 6:35 AM Lab 2: Higher-Order Functions, Lambda Expressions | CS 61A Spring 2024

Environment Diagram Practice

There is no Gradescope submission for this component.

However, we still encourage you to do this problem on paper to develop familiarity with
Environment Diagrams, which might appear in an alternate form on the exam. To check your
work, you can try putting the code into PythonTutor.

Q6: HOF Diagram Practice

Draw the environment diagram that results from executing the code below on paper or a
whiteboard. Use tutor.cs61a.org (https://tutor.cs61a.org) to check your work.

n=17
def f(x):
n=2~8

return x + 1

def g(x):
n=9
def hQ):
return x + 1
return h

def f(f, x):
return f(x + n)

f = f(g, n)
g = (lambda y: y())(f)

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab02/

11/14

7/1/24, 6:35 AM Lab 2: Higher-Order Functions, Lambda Expressions | CS 61A Spring 2024

Optional Questions

These questions are optional. If you don't complete them, you will still receive credit
for lab. They are great practice, so do them anyway!

Q7: Multiple

Write a function that takes in two numbers and returns the smallest number that is a
multiple of both.

def multiple(a, b):
"""Return the smallest number n that is a multiple of both a and b.

>>> multiple(3, 4)
12

>>> multiple(14, 21)
42

"x%% YOUR CODE HERE *#*x"

Use Ok to test your code:

python3 ok -q multiple %

Q8: | Heard You Liked Functions...

Define a function cycle that takes in three functions f1, f2,and f3, as arguments. cycle
will return another function g that should take in an integer argument n and return another
function h. That final function h should take in an argument x and cycle through applying
f1, f2,and f3 to x, depending on what n was. Here's what the final function h should do
to x for a few values of n:

[]
=]
|

= 0, return x
e n=1,apply f1 to x, orreturn f1(x)
= 2,apply f1 to x and then f2 to the result of that, or return f2(f1(x))

[)
=}
|

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab02/ 12/14

7/1/24, 6:35 AM Lab 2: Higher-Order Functions, Lambda Expressions | CS 61A Spring 2024

e n=3,apply f1 to x, f2 to the result of applying f1, and then f3 to the result of

applying f2, or f3(f2(f1(x)))
e n = 4, start the cycle again applying f1, then f2, then f3, then f1 again, or

fI(F3(F2(F1(x))))
e And so forth.

Hint. most of the work goes inside the most nested function.

def cycle(f1, f2, f3):

"""Returns a function that is itself a higher-order function.

>>> def add1(x):
return x + 1
>>> def times2(x):
... return x * 2
>>> def add3(x):
return x + 3

>>> my_cycle = cycle(addl, times2, add3)
>>> identity = my_cycle(@)

>>> identity(5)

>>> add_one_then_double =

>>> add_one_then_double(1)

>>> do_all_functions = my_cycle(3)

>>> do_all_functions(2)

>>> do_more_than_a_cycle

>>> do_more_than_a_cycle(2)

10

>>> do_two_cycles = my_cycle(6)

>>> do_two_cycles(1)
19

"x*%% YOUR CODE HERE *#*x"

Use Ok to test your code:

python3 ok -g cycle

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab02/

my_cycle(2)

my_cycle(4)

Qo

13/14

7/1/24, 6:35 AM Lab 2: Higher-Order Functions, Lambda Expressions | CS 61A Spring 2024

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab02/ 14/14

