7/1/24, 6:47 AM Homework 3 | CS 61A Spring 2024

Homework 3: Recursion, Tree Recursion
' hw03.zip (hw03.zip) |

Due by 11:59pm on Thursday, February 15

Instructions

Download hw03.zip (hw03.zip). Inside the archive, you will find a file called hw03.py
(hw03.py), along with a copy of the ok autograder.

Submission: When you are done, submit the assignment by uploading all code files you've
edited to Gradescope. You may submit more than once before the deadline; only the final
submission will be scored. Check that you have successfully submitted your code on
Gradescope. See Lab 0 (/~cs61a/sp24/lab/lab00#task-c-submitting-the-assignment) for more
instructions on submitting assignments.

Using Ok: If you have any questions about using Ok, please refer to this guide.
(/~cs61a/sp24/articles/using-ok)

Readings: You might find the following references useful:
e Section 1.7 (http:/composingprograms.com/pages/17-recursive-functions.html)

Grading: Homework is graded based on correctness. Each incorrect problem will decrease
the total score by one point. This homework is out of 2 points.

Required Questions

[Getting Started Videos }

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw03/ 113

7/1/24, 6:47 AM Homework 3 | CS 61A Spring 2024
Q1: Num Eights

Write a recursive function num_eights that takes a positive integer n and returns the number
of times the digit 8 appears in n.

Important: Use recursion; the tests will fail if you use any assignment statements or loops.
(You can, however, use function definitions if you'd like.)

def num_eights(n):
"""Returns the number of times 8 appears as a digit of n.

>>> num_eights(3)

>>> num_eights(8)

>>> num_eights(88888888)
>>> num_eights(2638)

>>> num_eights(86380)
>>> num_eights(12345)
>>> num_eights(8782089)

>>> from construct_check import check
>>> # ban all assignment statements
>>> check (HW_SOURCE_FILE, 'num_eights',
['Assign', 'AnnAssign', 'AugAssign', 'NamedExpr', 'For', 'While'])
True

"x%% YOUR CODE HERE *#*x"

Use Ok to test your code:

python3 ok -q num_eights %

Q2: Digit Distance

For a given integer, the digit distance is the sum of the absolute differences between
consecutive digits. For example:

e The digit distance of 6 is 0.
e The digit distance of 61 is 5, as the absolute value of 6 - 1 is 5.

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw03/ 2/13

7/1/24, 6:47 AM Homework 3 | CS 61A Spring 2024
e The digit distance of 71253 is 12 (6 + 1 + 3 + 2).

Write a function that determines the digit distance of a given positive integer. You must use
recursion or the tests will fail.

Hint: There are multiple valid ways of solving this problem! If you're stuck, try writing
out an iterative solution first, and then convert your iterative solution into a recursive
one.

def digit_distance(n):
"""Determines the digit distance of n.

>>> digit_distance(3)
0
>>> digit_distance(777)

>>> digit_distance(314)

>>> digit_distance(31415926535)

32

>>> digit_distance(3464660003)

16

>>> from construct_check import check

>>> # ban all loops

>>> check(HW_SOURCE_FILE, 'digit_distance',
['For', 'While'])

True

"x%x% YOUR CODE HERE *#*x"

Use Ok to test your code:

python3 ok -q digit_distance 3

Q3: Interleaved Sum

Write a function interleaved_sum, which takes in a number n and two one-argument
functions: odd_func and even_func. It applies odd_func to every odd number and even_func
to every even number from 1to n including n and returns the sum.

For example, executing interleaved_sum(5, lambda x: x, lambda x: x * x) returns 1 + 2%2 +
3+ 4%x4 + 5 =29.

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw03/ 3/13

7/1/24, 6:47 AM Homework 3 | CS 61A Spring 2024
Implement this function without using any loops or directly testing if a number is odd or
even -- no modulos (%) allowed! Instead of checking whether a number is even or odd, start
with 1, which you know is an odd number.

Hint: Introduce an inner helper function that takes an odd number k and computes an
interleaved sum from k to n (including n).

def interleaved_sum(n, odd_func, even_func):
"""Compute the sum odd_func(1) + even_func(2) + odd_func(3) + ..., up
to n.

>>> identity = lambda x: x

>>> square = lambda x: x * X

>>> triple = lambda x: x * 3

>>> interleaved_sum(5, identity, square) # 1 + 2%2 + 3 + 4%4 + 5
29

>>> interleaved_sum(5, square, identity) # 11
41

>>> interleaved_sum(4, triple, square) # 1%3 + 2%2 + 3%3 + 4%4

32

>>> interleaved_sum(4, square, triple) # 1x1 + 2%3 + 3%3 + 4%3

28

>>> from construct_check import check

>>> check (HW_SOURCE_FILE, 'interleaved_sum', ['While', 'For', 'Mod']) # ban loops and

True

+
N
+

3*3 + 4+ 5%5

"x%x% YOUR CODE HERE **x"

Use Ok to test your code:

python3 ok -q interleaved_sum %

Q4: Count Coins

Given a positive integer total, a set of coins makes change for total if the sum of the
values of the coins is total . Here we will use standard US Coin values: 1, 5, 10, 25. For
example, the following sets make change for 15:

¢ 15 1-cent coins
¢ 10 1-cent, 1 5-cent coins
e 51-cent, 2 5-cent coins

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw03/ 4/13

7/1/24, 6:47 AM Homework 3 | CS 61A Spring 2024
e 51-cent, 110-cent coins
e 3 5-cent coins
e 15-cent, 110-cent coin

Thus, there are 6 ways to make change for 15. Write a recursive function count_coins that
takes a positive integer total and returns the number of ways to make change for total
using coins.

You can use either of the functions given to you:

e next_larger_coin will return the next larger coin denomination from the input, i.e.
next_larger_coin(5) is 10.

e next_smaller_coin will return the next smaller coin denomination from the input, i.e.
next_smaller_coin(5) is 1.

e Either function will return None if the next coin value does not exist

There are two main ways in which you can approach this problem. One way uses
next_larger_coin, and another uses next_smaller_coin.

Important: Use recursion; the tests will fail if you use loops.

Hint: Refer the implementation (https:/www.composingprograms.com/pages/17-
recursive-functions.html#texample-partitions) of count_partitions for an example of
how to count the ways to sum up to a final value with smaller parts. If you need to
keep track of more than one value across recursive calls, consider writing a helper
function.

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw03/ 5/13

7/1/24, 6:47 AM

def

def

def

next_larger_coin(coin):
"""Returns the next larger coin in order.
>>> next_larger_coin(1)
5
>>> next_larger_coin(5)
10
>>> next_larger_coin(10)
25
>>> next_larger_coin(2) # Other values return None
if coin ==
return 5
elif coin ==
return 10
elif coin == 10:
return 25

next_smaller_coin(coin):
"""Returns the next smaller coin in order.
>>> next_smaller_coin(25)
10
>>> next_smaller_coin(10)
5
>>> next_smaller_coin(5)
1
>>> next_smaller_coin(2) # Other values return None
if coin == 25:
return 10
elif coin == 10:
return 5
elif coin == 5:
return 1

count_coins(total):

"""Return the number of ways to make change using coins of value of 1, 5, 10, 25.

>>> count_coins(15)
6
>>> count_coins(10)

>>> count_coins(20)
9

>>> count_coins(100) # How many ways to make change for a dollar?

242
>>> count_coins(200)

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw03/

Homework 3 | CS 61A Spring 2024

6/13

7/1/24, 6:47 AM Homework 3 | CS 61A Spring 2024
1463
>>> from construct_check import check
>>> # ban iteration
>>> check (HW_SOURCE_FILE, 'count_coins', ['While', 'For'])
True

"x%% YOUR CODE HERE *#*x"

Use Ok to test your code:

python3 ok -q count_coins 9%

Check Your Score Locally

You can locally check your score on each question of this assignment by running
python3 ok --score

This does NOT submit the assignment! When you are satisfied with your score, submit the
assignment to Gradescope to receive credit for it.

Submit

Submit this assignment by uploading any files you've edited to the appropriate Gradescope
assignment. Lab 00 (https://cs61a.org/lab/lab00/#submit-with-gradescope) has detailed
instructions.

In addition, all students who are not in the mega lab must complete this attendance form
(https://go.cs61a.org/lab-att). Submit this form each week, whether you attend lab or missed
it for a good reason. The attendance form is not required for mega section students.

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw03/ 7/13

7/1/24, 6:47 AM Homework 3 | CS 61A Spring 2024

Exam Practice

Homework assignments will also contain prior exam-level questions for you to take a look at.
These questions have no submission component; feel free to attempt them if you'd like a

challenge!
1. Fall 2017 MT1 Q4a: Digital (https:/inst.eecs.berkeley.edu/~cs61a/fa21/exam/fal7/mti1/61a-

fal7-mtl.pdf#page=5)
2. Summer 2018 MT1 Q5a: Won't You Be My Neighbor?
(https://inst.eecs.berkeley.edu/~cs61a/su18/assets/pdfs/61a-su18-mt.pdf#page=>5)

3. Fall 2019 Final Q6b: Palindromes
(https://inst.eecs.berkeley.edu/~cs61a/sp21/exam/fal19/final/61a-fal9-final.pdf#page=6)

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw03/ 8/13

7/1/24, 6:47 AM Homework 3 | CS 61A Spring 2024

Just For Fun Questions

The questions below are out of scope for 61A. You can try them if you want an extra
challenge, but they're just puzzles that are not required for the course. Almost all students
will skip them, and that's fine. We will not be prioritizing support for these questions on Ed
or during Office Hours.

Q5: Towers of Hanoi

A classic puzzle called the Towers of Hanoi is a game that consists of three rods, and a
number of disks of different sizes which can slide onto any rod. The puzzle starts with n
disks in a neat stack in ascending order of size on a start rod, the smallest at the top,
forming a conical shape.

The objective of the puzzle is to move the entire
rules:
e Only one disk may be moved at a time.
e Each move consists of taking the top (smallest) disk from one of the rods and sliding it
onto another rod, on top of the other disks that may already be present on that rod.
e No disk may be placed on top of a smaller disk.

tack t_o an end rod, obeying the following

Complete the definition of move_stack, which prints out the steps required to move n disks
from the start rod to the end rod without violating the rules. The provided print_move
function will print out the step to move a single disk from the given origin to the given
destination.

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw03/ 9/13

7/1/24, 6:47 AM Homework 3 | CS 61A Spring 2024

Hint: Draw out a few games with various n on a piece of paper and try to find a
pattern of disk movements that applies to any n. In your solution, take the recursive
leap of faith whenever you need to move any amount of disks less than n from one
rod to another. If you need more help, see the following hints.

Hint 1

)

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw03/ 10/13

7/1/24, 6:47 AM

def print_move(origin, destination):

Homework 3 | CS 61A Spring 2024

"""Print instructions to move a disk."""

print("Move the top disk from rod", origin, "to rod", destination)

def move_stack(n, start, end):

"""Print the moves required to move n disks on the start pole to the end

pole without violating the rules of Towers of Hanoi.

n -- number of disks
start -- a pole position, either 1, 2, or 3
end -- a pole position, either 1, 2, or 3

There are exactly three poles, and start and end must be different. Assume

that the start pole has at least n disks of increasing size, and the end

pole is either empty or has a top disk larger than the top n start disks.

>>> move_stack(1,

Move the top disk from

>>> move_stack(2,

Move the top disk from

Move the top disk from

Move the top disk from

>>> move_stack(3,

Move the top disk from

Move the top disk from
Move the top disk from
Move the top disk from

Move the top disk from

Move the top disk from

Move the top disk from

assert 1

1, 3)

1, 3)

1, 3)

rod

rod
rod
rod

rod
rod
rod
rod
rod
rod

rod

<= start <= 3 and
"xx% YOUR CODE HERE #**x"

Use Ok to test your code:

python3 ok -g move_stack

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw03/

1

_ NN =W = .,

to

to
to
to

to
to
to
to
to
to
to

rod

rod 2

rod 3

rod

rod
rod
rod
rod
rod
rod

rod

end

w W = w NN W

<= 3 and start != end, "Bad start/end"

Qo

11/13

7/1/24, 6:47 AM Homework 3 | CS 61A Spring 2024

Q6: Anonymous Factorial

This question demonstrates that it's possible to write recursive functions without
assigning them a name in the global frame.

The recursive factorial function can be written as a single expression by using a conditional
expression (http://docs.python.org/py3k/reference/expressions.html#conditional-expressions).

>>> fact = lambda n: 1 if n == 1 else mul(n, fact(sub(n, 1)))
>>> fact(5)
120

However, this implementation relies on the fact (no pun intended) that fact has a name, to
which we refer in the body of fact. To write a recursive function, we have always given it a
name using a def or assignment statement so that we can refer to the function within its
own body. In this question, your job is to define fact recursively without giving it a name!

Write an expression that computes n factorial using only call expressions, conditional
expressions, and lambda expressions (no assignment or def statements).

Note: You are not allowed to use make_anonymous_factorial in your return expression.

The sub and mul functions from the operator module are the only built-in functions
required to solve this problem.

from operator import sub, mul

def make_anonymous_factorial():
"""Return the value of an expression that computes factorial.

>>> make_anonymous_factorial()(5)
120
>>> from construct_check import check
>>> # ban any assignments or recursion
>>> check (HW_SOURCE_FILE, 'make_anonymous_factorial',
['Assign', 'AnnAssign', 'AugAssign', 'NamedExpr', 'FunctionDef', 'Recursion'],
True

return 'YOUR_EXPRESSION_HERE'

Use Ok to test your code:

python3 ok -g make_anonymous_factorial 3

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw03/ 12/13

7/1/24, 6:47 AM Homework 3 | CS 61A Spring 2024

https://inst.eecs.berkeley.edu/~cs61a/sp24/hw/hw03/ 13/13

