7/1/24, 6:53 AM

CoMPoSING PRoGRAMS

Chapter 2
Hide contents

2.1 Introduction

2.1.1 Native Data Types

2.2 Data Abstraction

2.2.1 Example: Rational Numbers
2.2.2 Pairs

2.2.3 Abstraction Barriers

2.2.4 The Properties of Data

2.3 Sequences

2.3.1 Lists

2.3.2 Sequence lteration
2.3.3 Sequence Processing
2.3.4 Sequence Abstraction
2.3.5 Strings

2.3.6 Trees

2.3.7 Linked Lists

2.4 Mutable Data

2.4.1 The Object Metaphor
2.4.2 Sequence Objects

2.4.3 Dictionaries

2.4.4 Local State

2.4.5 The Benefits of Non-Local
Assignment

2.4.6 The Cost of Non-Local
Assignment

2.4.7 Implementing Lists and
Dictionaries

2.4.8 Dispatch Dictionaries
2.4.9 Propagating Constraints

2.5 Object-Oriented
Programming

2.5.1 Objects and Classes
2.5.2 Defining Classes

2.5.3 Message Passing and Dot
Expressions

2.5.4 Class Attributes

2.5.5 Inheritance

2.5.6 Using Inheritance

2.5.7 Multiple Inheritance

2.5.8 The Role of Objects

2.6 Implementing Classes and
Objects

2.6.1 Instances
2.6.2 Classes
2.6.3 Using Implemented Objects

2.1 Introduction

TEXT PROJECTS TUTOR ABOUT

Chapter 2: Building Abstractions with Data

2.1 Introduction

We concentrated in Chapter 1 on computational processes and on the role of functions in program
design. We saw how to use primitive data (numbers) and primitive operations (arithmetic), how to
form compound functions through composition and control, and how to create functional abstractions
by giving names to processes. We also saw that higher-order functions enhance the power of our
language by enabling us to manipulate, and thereby to reason, in terms of general methods of
computation. This is much of the essence of programming.

This chapter focuses on data. The techniques we investigate here will allow us to represent and
manipulate information about many different domains. Due to the explosive growth of the Internet, a
vast amount of structured information is freely available to all of us online, and computation can be
applied to a vast range of different problems. Effective use of built-in and user-defined data types are
fundamental to data processing applications.

2.1.1 Native Data Types

Every value in Python has a class that determines what type of value it is. Values that share a class
also share behavior. For example, the integers 1 and 2 are both instances of the int class. These two
values can be treated similarly. For example, they can both be negated or added to another integer.
The built-in type function allows us to inspect the class of any value.

>>> type(2)
<class '"int'>

The values we have used so far are instances of a small number of native data types that are built
into the Python language. Native data types have the following properties:

1. There are expressions that evaluate to values of native types, called literals.
2. There are built-in functions and operators to manipulate values of native types.

The int class is the native data type used to represent integers. Integer literals (sequences of
adjacent numerals) evaluate to int values, and mathematical operators manipulate these values.

>>> 12 + 3
30 12

Python includes three native numeric types: integers (int), real numbers (float), and complex
numbers (complex).

>>> type(1.5)
<class 'float'>
>>> type(1+1j)
<class 'complex'>

Floats. The name float comes from the way in which real numbers are represented in Python and
many other programming languages: a "floating point" representation. While the details of how
numbers are represented is not a topic for this text, some high-level differences between int and
float objects are important to know. In particular, int objects represent integers exactly, without any
approximation or limits on their size. On the other hand, float objects can represent a wide range of
fractional numbers, but not all numbers can be represented exactly, and there are minimum and
maximum values. Therefore, float values should be treated as approximations to real values. These
approximations have only a finite amount of precision. Combining f1oat values can lead to
approximation errors; both of the following expressions would evaluate to 7 if not for approximation.

>»>7 /3 %3
7.0

»>1/3*%7*3

https://www.composingprograms.com/pages/21-introduction.html

12



7/1/24, 6:53 AM

2.7 Object Abstraction

2.7.1 String Conversion

2.7.2 Special Methods

2.7.3 Multiple Representations
2.7.4 Generic Functions

2.8 Efficiency

2.8.1 Measuring Efficiency
2.8.2 Memoization

2.8.3 Orders of Growth

2.8.4 Example: Exponentiation
2.8.5 Growth Categories

2.9 Recursive Objects

2.9.1 Linked List Class
2.9.2 Tree Class
2.9.3 Sets

2.1 Introduction
6.999999999999999

Although int values are combined above, dividing one int by another yields a float value: a truncated
finite approximation to the actual ratio of the two integers divided.

>>> type(1/3)
<class 'float'>
>>> 1/3
©.3333333333333333

Problems with this approximation appear when we conduct equality tests.

>>> 1/3 == 0.333333333333333312345 # Beware of float approximation
True

These subtle differences between the int and float class have wide-ranging consequences for
writing programs, and so they are details that must be memorized by programmers. Fortunately, there
are only a handful of native data types, limiting the amount of memorization required to become
proficient in a programming language. Moreover, these same details are consistent across many
programming languages, enforced by community guidelines such as the IEEE 754 floating point
standard.

Non-numeric types. Values can represent many other types of data, such as sounds, images,
locations, web addresses, network connections, and more. A few are represented by native data
types, such as the bool class for values True and False. The type for most values must be defined by
programmers using the means of combination and abstraction that we will develop in this chapter.

The following sections introduce more of Python's native data types, focusing on the role they play in
creating useful data abstractions. For those interested in further details, a chapter on native data
types in the online book Dive Into Python 3 gives a pragmatic overview of all Python's native data
types and how to manipulate them, including numerous usage examples and practical tips.

Continue: 2.2 Data Abstraction

Composing Programs by John DeNero, based on the textbook Structure and Interpretation of Computer Programs by Harold Abelson and Gerald Jay Sussman, is licensed under a Creative
Commons Attribution-ShareAlike 3.0 Unported License.

https://www.composingprograms.com/pages/21-introduction.html

212



