7/1/24, 7:13 AM

CoMPoSING PRoGRAMS

Chapter 2
Hide contents

2.1 Introduction

2.1.1 Native Data Types

2.2 Data Abstraction

2.2.1 Example: Rational Numbers
2.2.2 Pairs

2.2.3 Abstraction Barriers

2.2.4 The Properties of Data

2.3 Sequences

2.3.1 Lists

2.3.2 Sequence lteration
2.3.3 Sequence Processing
2.3.4 Sequence Abstraction
2.3.5 Strings

2.3.6 Trees

2.3.7 Linked Lists

2.4 Mutable Data

2.4.1 The Object Metaphor
2.4.2 Sequence Objects

2.4.3 Dictionaries

2.4.4 Local State

2.4.5 The Benefits of Non-Local
Assignment

2.4.6 The Cost of Non-Local
Assignment

2.4.7 Implementing Lists and
Dictionaries

2.4.8 Dispatch Dictionaries
2.4.9 Propagating Constraints

2.5 Object-Oriented

Programming

2.5.1 Objects and Classes
2.5.2 Defining Classes

2.5.3 Message Passing and Dot
Expressions

2.5.4 Class Attributes

2.5.5 Inheritance

2.5.6 Using Inheritance

2.5.7 Multiple Inheritance

2.5.8 The Role of Objects

2.6 Implementing Classes and
Objects

2.6.1 Instances
2.6.2 Classes
2.6.3 Using Implemented Objects

2.7 Object Abstraction

2.7.1 String Conversion

2.7.2 Special Methods

2.7.3 Multiple Representations
2.7.4 Generic Functions

2.4 Mutable Data

TEXT PROJECTS TUTOR ABOUT

2.4 Mutable Data

We have seen how abstraction is vital in helping us to cope with the complexity of large systems.
Effective programming also requires organizational principles that can guide us in formulating the
overall design of a program. In particular, we need strategies to help us structure large systems to be
modular, meaning that they divide naturally into coherent parts that can be separately developed and
maintained.

One powerful technique for creating modular programs is to incorporate data that may change state
over time. In this way, a single data object can represent something that evolves independently of the
rest of the program. The behavior of a changing object may be influenced by its history, just like an
entity in the world. Adding state to data is a central ingredient of a paradigm called object-oriented
programming.

2.41 The Object Metaphor

In the beginning of this text, we distinguished between functions and data: functions performed
operations and data were operated upon. When we included function values among our data, we
acknowledged that data too can have behavior. Functions could be manipulated as data, but could
also be called to perform computation.

Objects combine data values with behavior. Objects represent information, but also behave like the
things that they represent. The logic of how an object interacts with other objects is bundled along
with the information that encodes the object's value. When an object is printed, it knows how to spell
itself out in text. If an object is composed of parts, it knows how to reveal those parts on demand.
Objects are both information and processes, bundled together to represent the properties,
interactions, and behaviors of complex things.

Object behavior is implemented in Python through specialized object syntax and associated
terminology, which we can introduce by example. A date is a kind of object.

>>> from datetime import date

The name date is bound to a class. As we have seen, a class represents a kind of value. Individual
dates are called instances of that class. Instances can be constructed by calling the class on
arguments that characterize the instance.

>>> tues = date(2014, 5, 13)

While tues was constructed from primitive numbers, it behaves like a date. For instance, subtracting it
from another date will give a time difference, which we can print.

>>> print(date(2014, 5, 19) - tues)
6 days, 0:00:00

Objects have attributes, which are named values that are part of the object. In Python, like many
other programming languages, we use dot notation to designated an attribute of an object.

<expression> . <name>

Above, the <expression> evaluates to an object, and <name> is the name of an attribute for that object.

Unlike the names that we have considered so far, these attribute names are not available in the
general environment. Instead, attribute names are particular to the object instance preceding the dot.

>>> tues.year
2014

Objects also have methods, which are function-valued attributes. Metaphorically, we say that the
object "knows" how to carry out those methods. By implementation, methods are functions that
compute their results from both their arguments and their object. For example, The strftime method
(a classic function name meant to evoke "string format of time") of tues takes a single argument that
specifies how to display a date (e.g., %A means that the day of the week should be spelled out in full).

>>> tues.strftime('%A, %B %d')
'Tuesday, May 13'

Computing the return value of strftime requires two inputs: the string that describes the format of the
output and the date information bundled into tues. Date-specific logic is applied within this method to

https://www.composingprograms.com/pages/24-mutable-data.html 1716

7/1/24, 7:13 AM

2.8 Efficiency

2.8.1 Measuring Efficiency
2.8.2 Memoization

2.8.3 Orders of Growth

2.8.4 Example: Exponentiation
2.8.5 Growth Categories

2.9 Recursive Objects

2.9.1 Linked List Class
2.9.2 Tree Class
2.9.3 Sets

2.4 Mutable Data

yield this result. We never stated that the 13th of May, 2014, was a Tuesday, but knowing the
corresponding weekday is part of what it means to be a date. By bundling behavior and information
together, this Python object offers us a convincing, self-contained abstraction of a date.

Dates are objects, but numbers, strings, lists, and ranges are all objects as well. They represent
values, but also behave in a manner that befits the values they represent. They also have attributes
and methods. For instance, strings have an array of methods that facilitate text processing.

>>> '1234' .isnumeric()

True

>>> "rOBERT dE nIRO'.swapcase()
'Robert De Niro'

>>> 'eyes'.upper().endswith('YES")
True

In fact, all values in Python are objects. That is, all values have behavior and attributes. They act like
the values they represent.

2.4.2 Sequence Objects

Instances of primitive built-in values such as numbers are immutable. The values themselves cannot
change over the course of program execution. Lists on the other hand are mutable.

Mutable objects are used to represent values that change over time. A person is the same person

from one day to the next, despite having aged, received a haircut, or otherwise changed in some way.

Similarly, an object may have changing properties due to mutating operations. For example, it is
possible to change the contents of a list. Most changes are performed by invoking methods on list
objects.

We can introduce many list modification operations through an example that illustrates the history of
playing cards (drastically simplified). Comments in the examples describe the effect of each method
invocation.

Playing cards were invented in China, perhaps around the 9th century. An early deck had three suits,
which corresponded to denominations of money.

>>> chinese = ['coin', 'string', ‘'myriad'] # A Llist Lliteral
>>> suits = chinese # Two names refer to the same Llist

As cards migrated to Europe (perhaps through Egypt), only the suit of coins remained in Spanish
decks (oro).

>>> suits.pop() # Remove and return the final element
‘myriad’
>>> suits.remove('string') # Remove the first element that equals the argument

Three more suits were added (they evolved in name and design over time),

>>> suits.append(‘cup') # Add an element to the end
>>> suits.extend(['sword', 'club']) # Add all elements of a sequence to the end

and ltalians called swords spades.
>>> suits[2] = 'spade' # Replace an element

giving the suits of a traditional Italian deck of cards.

>>> suits
['coin', ‘cup', 'spade', 'club']

The French variant used today in the U.S. changes the first two suits:

>>> suits[0:2] = ['heart', 'diamond'] # Replace a slice
>>> suits
['heart', 'diamond', 'spade', 'club']

Methods also exist for inserting, sorting, and reversing lists. All of these mutation operations change
the value of the list; they do not create new list objects.

Sharing and Identity. Because we have been changing a single list rather than creating new lists,
the object bound to the name chinese has also changed, because it is the same list object that was
bound to suits!

>>> chinese # This name co-refers with "suits" to the same changing list
['heart', 'diamond', 'spade', 'club']

https://www.composingprograms.com/pages/24-mutable-data.html

2/16

7/1/24, 7:13 AM

2.4 Mutable Data

This behavior is new. Previously, if a name did not appear in a statement, then its value would not be
affected by that statement. With mutable data, methods called on one name can affect another name
at the same time.

The environment diagram for this example shows how the value bound to chinese is changed by
statements involving only suits. Step through each line of the following example to observe these
changes.

chinese = ['coin', 'string', 'myriad'] Global ?"Sf
) . 0 1
suits = chinese

chinese "coin®
suits.pop() suits L
suits.remove('string"')
suits.append(‘cup")

"string"”

suits.extend(['sword', 'club'])
suits[2] = 'spade’
suits[@:2] = ['heart', 'diamond']

v
00 N O Vv bW N

Edit code in Online Python Tutor

0

line that has just executed
» next line to execute

Lists can be copied using the 1ist constructor function. Changes to one list do not affect another,
unless they share structure.

>>> nest = list(suits) # Bind "nest" to a second list with the same elements
>>> nest[@] = suits # Create a nested Llist

According to this environment, changing the list referenced by suits will affect the nested list that is
the first element of nest, but not the other elements.

>>> suits.insert(2, 'Joker') # Insert an element at index 2, shifting the rest
>>> nest
[["heart', 'diamond', 'Joker', 'spade', ‘club'], ‘'diamond', ‘'spade’, ‘club']

And likewise, undoing this change in the first element of nest will change suit as well.

>>> nest[@].pop(2)

‘Joker'

>>> suits

["heart', 'diamond', 'spade', 'club']

Stepping through this example line by line will show the representation of a nested list.

suits = ['heart', 'diamond', 'spade', 'club']
nest = list(suits)

nest[0] = suits

suits.insert(2, 'Joker')

joke = nest[@].pop(2)

u b wN

Edit code in Online Python Tutor

<Back Step1of5

line that has just executed
P next line to execute

Because two lists may have the same contents but in fact be different lists, we require a means to
test whether two objects are the same. Python includes two comparison operators, called is and is
not, that test whether two expressions in fact evaluate to the identical object. Two objects are identical
if they are equal in their current value, and any change to one will always be reflected in the other.
Identity is a stronger condition than equality.

>>> suits is nest[@]

True
>>> suits is ['heart', 'diamond', 'spade', 'club']
False
>>> suits == ['heart', 'diamond', 'spade', 'club']
True

https://www.composingprograms.com/pages/24-mutable-data.html

3/16

7/1/24, 7:13 AM

2.4 Mutable Data

The final two comparisons illustrate the difference between is and ==. The former checks for identity,
while the latter checks for the equality of contents.

List comprehensions. A list comprehension always creates a new list. For example, the unicodedata
module tracks the official names of every character in the Unicode alphabet. We can look up the
characters corresponding to names, including those for card suits.

>>> from unicodedata import lookup
>>> [lookup('WHITE ' + s.upper() + ' SUIT') for s in suits]
[ror, o, ‘e, 'e']

This resulting list does not share any of its contents with suits, and evaluating the list comprehension
does not modify the suits list.

You can read more about the Unicode standard for representing text in the Unicode section of Dive
into Python 3.

Tuples. A tuple, an instance of the built-in tuple type, is an immutable sequence. Tuples are created
using a tuple literal that separates element expressions by commas. Parentheses are optional but
used commonly in practice. Any objects can be placed within tuples.

>»> 1, 2 +3

(1, 5)

>>> ("the", 1, ("and", “"only"))
('the', 1, ('and', 'only"))

>>> type((10, 20))

<class 'tuple'>

Empty and one-element tuples have special literal syntax.

>>> () # 0 elements

0
>>> (10,) # 1 element

(10,)

Like lists, tuples have a finite length and support element selection. They also have a few methods
that are also available for lists, such as count and index.

>>> code = ("up", "up", "down", “"down") + ("left", "right") * 2
>>> len(code)

8

>>> code[3]

‘down*

>>> code.count("down")

2

>>> code.index("left")

4

However, the methods for manipulating the contents of a list are not available for tuples because
tuples are immutable.

While it is not possible to change which elements are in a tuple, it is possible to change the value of a
mutable element contained within a tuple.

-— >

1 nest = (1@, 20, [30, 48]) Global tuple o7 it
0 1 2 0

2 nest[2].pop() nestL 10 | 20 30

Edit code in Online Python Tutor

0
IHIHHEHI End | Forward >

line that has just executed
P next line to execute

Tuples are used implicitly in multiple assignment. An assignment of two values to two names creates
a two-element tuple and then unpacks it.

2.4.3 Dictionaries

Dictionaries are Python's built-in data type for storing and manipulating correspondence relationships.
A dictionary contains key-value pairs, where both the keys and values are objects. The purpose of a
dictionary is to provide an abstraction for storing and retrieving values that are indexed not by
consecutive integers, but by descriptive keys.

Strings commonly serve as keys, because strings are our conventional representation for names of
things. This dictionary literal gives the values of various Roman numerals.

https://www.composingprograms.com/pages/24-mutable-data.html 4/16

7/1/24, 7:13 AM

2.4 Mutable Data
>>> numerals = {'I': 1.0, 'V': 5, 'X': 10}

Looking up values by their keys uses the element selection operator that we previously applied to
sequences.

>>> numerals['X']
10

A dictionary can have at most one value for each key. Adding new key-value pairs and changing the
existing value for a key can both be achieved with assignment statements.

1
50

>>> numerals['I"]
>>> numerals['L"']
>>> numerals

{'I': 1, 'X': 10, 'L': 50, 'V': 5}

Notice that 'L' was not added to the end of the output above. Dictionaries are unordered collections
of key-value pairs. When we print a dictionary, the keys and values are rendered in some order, but
as users of the language we cannot predict what that order will be. The order may change when
running a program multiple times.

Dictionaries can appear in environment diagrams as well.

1 numerals = {'I': 1, 'V': 5, 'X': 10} Global dict
2 numerals['L'] = 50 numerals L "It 1
Edit code in Online Python Tutor "L" 50

End | Forward > w10

line that has just executed
P next line to execute

The dictionary type also supports various methods of iterating over the contents of the dictionary as a
whole. The methods keys, values, and items all return iterable values.

>>> sum(numerals.values())
66

A list of key-value pairs can be converted into a dictionary by calling the dict constructor function.

>>> dict([(3, 9), (4, 16), (5, 25)])
{3: 9, 4: 16, 5: 25}

Dictionaries do have some restrictions:

* Akey of a dictionary cannot be or contain a mutable value.
* There can be at most one value for a given key.

This first restriction is tied to the underlying implementation of dictionaries in Python. The details of
this implementation are not a topic of this text. Intuitively, consider that the key tells Python where to
find that key-value pair in memory; if the key changes, the location of the pair may be lost. Tuples are
commonly used for keys in dictionaries because lists cannot be used.

The second restriction is a consequence of the dictionary abstraction, which is designed to store and
retrieve values for keys. We can only retrieve the value for a key if at most one such value exists in
the dictionary.

A useful method implemented by dictionaries is get, which returns either the value for a key, if the key
is present, or a default value. The arguments to get are the key and the default value.

>>> numerals.get('A', 0)
0
>>> numerals.get('V', 9)
5

Dictionaries also have a comprehension syntax analogous to those of lists. A key expression and a
value expression are separated by a colon. Evaluating a dictionary comprehension creates a new
dictionary object.

>>> {x: x*x for x in range(3,6)}
{3: 9, 4: 16, 5: 25}

2.4.4 Local State

https://www.composingprograms.com/pages/24-mutable-data.html

5/16

7/1/24, 7:13 AM 2.4 Mutable Data

Lists and dictionaries have local state: they are changing values that have some particular contents at
any point in the execution of a program. The word "state" implies an evolving process in which that

state may change.

Functions can also have local state. For instance, let us define a function that models the process of
withdrawing money from a bank account. We will create a function called withdraw, which takes as its
argument an amount to be withdrawn. If there is enough money in the account to accommodate the
withdrawal, then withdraw will return the balance remaining after the withdrawal. Otherwise, withdraw
will return the message 'Insufficient funds'. For example, if we begin with $100 in the account, we

would like to obtain the following sequence of return values by calling withdraw:

>>> withdraw(25)

75

>>> withdraw(25)

50

>>> withdraw(60)
'Insufficient funds'
>>> withdraw(15)

35

Above, the expression withdraw(25), evaluated twice, yields different values. Thus, this user-defined
function is non-pure. Calling the function not only returns a value, but also has the side effect of
changing the function in some way, so that the next call with the same argument will return a different
result. This side effect is a result of withdraw making a change to a name-value binding outside of the

current frame.

For withdraw to make sense, it must be created with an initial account balance. The function

make_withdraw is a higher-order function that takes a starting balance as an argument. The function

withdraw is its return value.

>>> withdraw = make_withdraw(100)

An implementation of make_withdraw requires a new kind of statement: a nonlocal statement. When we
call make_withdraw, we bind the name balance to the initial amount. We then define and return a local

function, withdraw, which updates and returns the value of balance when called.

>>> def make_withdraw(balance):

"""Return a withdraw function that draws down balance with each call."""

def withdraw(amount):

nonlocal balance # Declare the name "balance" nonlocal

if amount > balance:
return 'Insufficient funds’

balance = balance - amount # Re-bind the existing balance name

return balance
return withdraw

The nonlocal statement declares that whenever we change the binding of the name balance, the
binding is changed in the first frame in which balance is already bound. Recall that without the nonlocal
statement, an assignment statement would always bind a name in the first frame of the current
environment. The nonlocal statement indicates that the name appears somewhere in the environment

other than the first (local) frame or the last (global) frame.

The following environment diagrams illustrate the effects of multiple calls to a function created by

_—
L

make_withdraw.

1 def make_withdraw(balance):

2 def withdraw(amount):

3 nonlocal balance

4 if amount > balance:

5 return 'Insufficient funds'
6 balance = balance - amount
7 return balance

8 return withdraw

9
10 wd = make_withdraw(20)

» 11 wd(5)

12 wd(3)

Edit code in Online Python Tutor

O

line that has just executed
» next line to execute

https://www.composingprograms.com/pages/24-mutable-data.html

Global

make_withdraw

wd

balance
withdraw

Return
value

%fl: make_withdraw [parent=Global]

20

_

func make_wit

func withdraw

6/16

7/1/24, 7:13 AM

2.4 Mutable Data

The first def statement has the usual effect: it creates a new user-defined function and binds the
name make_withdraw to that function in the global frame. The subsequent call to make_withdraw creates
and returns a locally defined function withdraw. The name balance is bound in the parent frame of this
function. Crucially, there will only be this single binding for the name balance throughout the rest of this
example.

Next, we evaluate an expression that calls this function, bound to the name wd, on an amount 5. The
body of withdraw is executed in a new environment that extends the environment in which withdraw
was defined. Tracing the effect of evaluating withdraw illustrates the effect of a nonlocal statement in
Python: a name outside of the first local frame can be changed by an assignment statement.

1 def make_withdraw(balance): Global ‘/)
2 def withdraw(amount): make withdraw I_/—>
3 nonlocal balance wd L
4 if amount > balance:
5 return 'Insufficient funds'
f1: make_withdraw [parent=Global]
6 balance = balance - amount
7 return balance balance |15
8 return withdraw withdraw
9 Return
10 wd = make_withdraw(20) value |
11 wd(5)
> 12 wd(3) f2: withdraw [parent=f1]
Edit code in Online Python Tutor amount 5_
D Return 15
value

line that has just executed
» next line to execute

The nonlocal statement changes all of the remaining assignment statements in the definition of
withdraw. After executing nonlocal balance, any assignment statement with balance on the left-hand
side of = will not bind balance in the first frame of the current environment. Instead, it will find the first
frame in which balance was already defined and re-bind the name in that frame. If balance has not
previously been bound to a value, then the nonlocal statement will give an error.

By virtue of changing the binding for balance, we have changed the withdraw function as well. The next
time it is called, the name balance will evaluate to 15 instead of 20. Hence, when we call withdraw a
second time, we see that its return value is 12 and not 17. The change to balance from the first call
affects the result of the second call.

1 def make_withdraw(balance): Global /')
2 def withdraw(amount): make_withdraw L/——’
3 nonlocal balance wd L
4 if amount > balance:
5 return 'Insufficient funds' .
f1: make_withdraw [parent=Global]
6 balance = balance - amount
7 return balance balance |12
8 return withdraw withdraw
9 Return
10 wd = make_withdraw(20) value |
11 wd(5)
12 wd(3) f2: withdraw [parent=f1]
Edit code in Online Python Tutor amount 5_
Return 15
O value
.) f3: withdraw [parent=f1]
line that has just executed
» next line to execute amount Ii
Return \12
value

The second call to withdraw does create a second local frame, as usual. However, both withdraw
frames have the same parent. That is, they both extend the environment for make_withdraw, which
contains the binding for balance. Hence, they share that particular name binding. Calling withdraw has

https://www.composingprograms.com/pages/24-mutable-data.html

func make_wit!

func withdraw

func make_wit!

func withdraw

7/16

7/1/24, 7:13 AM

2.4 Mutable Data

the side effect of altering the environment that will be extended by future calls to withdraw. The
nonlocal statement allows withdraw to change a name binding in the make_withdraw frame.

Ever since we first encountered nested def statements, we have observed that a locally defined
function can look up names outside of its local frames. No nonlocal statement is required to access a
non-local name. By contrast, only after a nonlocal statement can a function change the binding of
names in these frames.

By introducing nonlocal statements, we have created a dual role for assignment statements. Either
they change local bindings, or they change nonlocal bindings. In fact, assignment statements already
had a dual role: they either created new bindings or re-bound existing names. Assignment can also
change the contents of lists and dictionaries. The many roles of Python assignment can obscure the
effects of executing an assignment statement. It is up to you as a programmer to document your code
clearly so that the effects of assignment can be understood by others.

Python Particulars. This pattern of non-local assignment is a general feature of programming
languages with higher-order functions and lexical scope. Most other languages do not require a
nonlocal statement at all. Instead, non-local assignment is often the default behavior of assignment
statements.

Python also has an unusual restriction regarding the lookup of names: within the body of a function,
all instances of a name must refer to the same frame. As a result, Python cannot look up the value of
a name in a non-local frame, then bind that same name in the local frame, because the same name
would be accessed in two different frames in the same function. This restriction allows Python to pre-
compute which frame contains each name before executing the body of a function. When this
restriction is violated, a confusing error message results. To demonstrate, the make_withdraw example
is repeated below with the nonlocal statement removed.

def make_withdraw(balance): Global
def withdraw(amount):

if amount > balance:

return 'Insufficient funds'

1

2

3

4

5 balance = balance - amount
6 return balance

7 return withdraw

8

9 wd = make_withdraw(20)

10 wd(5)

Edit code in Online Python Tutor

UnboundLocalError: local variable 'balance' referenced before assignment

line that has just executed
» next line to execute

This unboundLocalError appears because balance is assigned locally in line 5, and so Python assumes
that all references to balance must appear in the local frame as well. This error occurs before line 5 is
ever executed, implying that Python has considered line 5 in some way before executing line 3. As we
study interpreter design, we will see that pre-computing facts about a function body before executing
it is quite common. In this case, Python's pre-processing restricted the frame in which balance could
appear, and thus prevented the name from being found. Adding a nonlocal statement corrects this
error. The nonlocal statement did not exist in Python 2.

2.4.5 The Benefits of Non-Local Assignment

Non-local assignment is an important step on our path to viewing a program as a collection of
independent and autonomous objects, which interact with each other but each manage their own
internal state.

In particular, non-local assignment has given us the ability to maintain some state that is local to a
function, but evolves over successive calls to that function. The balance associated with a particular
withdraw function is shared among all calls to that function. However, the binding for balance
associated with an instance of withdraw is inaccessible to the rest of the program. Only wd is
associated with the frame for make_withdraw in which it was defined. If make_withdraw is called again,
then it will create a separate frame with a separate binding for balance.

We can extend our example to illustrate this point. A second call to make_withdraw returns a second
withdraw function that has a different parent. We bind this second function to the name wdz2 in the
global frame.

https://www.composingprograms.com/pages/24-mutable-data.html

make_withc

E‘Fl: make_withdraw [parent=(

balan
withdre

Retu
val

f2: withdraw [parent=f1]

amo

8/16

7/1/24, 7:13 AM

2.4 Mutable Data

/ func make_witl

func withdraw

func withdraw

1 def make_withdraw(balance): Global
2 def withdraw(amount): make withdraw L/
3 nonlocal balance wd L'/—§~\>
4 if amount > balance:
o wd2 L
5 return 'Insufficient funds'
6 balance = balance - amount
7 return balance f1: make_withdraw [parent=Global]
8 return withdraw balance IE
9 withdraw L
10 wd = make_withdraw(20) Return
11 wd2 = make_withdraw(7) value
» 12 wd2(6)
13 wd(8) f2: make_withdraw [parent=Global]
Edit code in Online Python Tutor balance |Z
O withdraw L
Return
line that has just executed
P next line to execute

Now, we see that there are in fact two bindings for the name balance in two different frames, and each
withdraw function has a different parent. The name wd is bound to a function with a balance of 20,
while wd2 is bound to a different function with a balance of 7.

Calling wd2 changes the binding of its non-local balance name, but does not affect the function bound
to the name withdraw. A future call to wd is unaffected by the changing balance of wd2; its balance is still

20.
1 def make_withdraw(balance): Global
2 def withdraw(amount): make_withdraw |:/
3 nonlocal balance wd I:/—s-\>
4 if amount > balance:

. o) wd2 |

5 return 'Insufficient funds
6 balance = balance - amount
7 return balance f1: make_withdraw [parent=Global]
8 return withdraw balance IE
9 withdraw L
10 wd = make_withdraw(20) Return
11 wd2 = make_withdraw(7) value L
12 wd2(6)

» 13 wd(8) £2: make_withdraw [parent=Global]

»

In this way, each instance of withdraw maintains its own balance state, but that state is inaccessible to

/)func make_witl

Edit code in Online Python Tutor

O

line that has just executed

next line to execute

f3:

balance Il
withdraw L

Return
value
withdraw [parent=f2]

amount IE

Return 1
value

any other function in the program. Viewing this situation at a higher level, we have created an

abstraction of a bank account that manages its own internals but behaves in a way that models

accounts in the world: it changes over time based on its own history of withdrawal requests.

2.4.6 The Cost of Non-Local Assignment

Our environment model of computation cleanly extends to explain the effects of non-local
assignment. However, non-local assignment introduces some important nuances in the way we think
about names and values.

func withdraw

func withdraw

Previously, our values did not change; only our names and bindings changed. When two names a and
b were both bound to the value 4, it did not matter whether they were bound to the same 4 or different

https://www.composingprograms.com/pages/24-mutable-data.html

9/16

7/1/24, 7:13 AM

2.4 Mutable Data

4's. As far as we could tell, there was only one 4 object that never changed.

However, functions with state do not behave this way. When two names wd and wd2 are both bound to
a withdraw function, it does matter whether they are bound to the same function or different instances
of that function. Consider the following example, which contrasts the one we just analyzed. In this
case, calling the function named by wd2 did change the value of the function named by wd, because
both names refer to the same function.

1 def make_withdraw(balance): Global
2 def withdraw(amount): make_withdraw
3 nonlocal balance wd L
4 if amount > balance:
. . . wd2 L
5 return 'Insufficient funds
6 balance = balance - amount
7 return balance f1: make_withdraw [parent=Global]
8 return withdraw balance |10
9 withdraw
10 wd = make_withdraw(12) return |
11 wd2 = wd value
12 wd2(1) o
13 wd(1) f2: withdraw [parent=f1]
Edit code in Online Python Tutor amount |1
0 e |1

End | Forward >

line that has just executed
> next line to execute amount |1

Return B
value

It is not unusual for two names to co-refer to the same value in the world, and so it is in our programs.
But, as values change over time, we must be very careful to understand the effect of a change on
other names that might refer to those values.

f3: withdraw [parent=f1]

The key to correctly analyzing code with non-local assignment is to remember that only function calls
can introduce new frames. Assignment statements always change bindings in existing frames. In this
case, unless make_withdraw is called twice, there can be only one binding for balance.

Sameness and change. These subtleties arise because, by introducing non-pure functions that
change the non-local environment, we have changed the nature of expressions. An expression that
contains only pure function calls is referentially transparent; its value does not change if we substitute
one of its subexpression with the value of that subexpression.

Re-binding operations violate the conditions of referential transparency because they do more than
return a value; they change the environment. When we introduce arbitrary re-binding, we encounter a
thorny epistemological issue: what it means for two values to be the same. In our environment model
of computation, two separately defined functions are not the same, because changes to one may not
be reflected in the other.

In general, so long as we never modify data objects, we can regard a compound data object to be
precisely the totality of its pieces. For example, a rational number is determined by giving its
numerator and its denominator. But this view is no longer valid in the presence of change, where a
compound data object has an "identity" that is something different from the pieces of which it is
composed. A bank account is still "the same" bank account even if we change the balance by making
a withdrawal; conversely, we could have two bank accounts that happen to have the same balance,
but are different objects.

Despite the complications it introduces, non-local assignment is a powerful tool for creating modular
programs. Different parts of a program, which correspond to different environment frames, can evolve
separately throughout program execution. Moreover, using functions with local state, we are able to
implement mutable data types. In fact, we can implement abstract data types that are equivalent to
the built-in 1ist and dict types introduced above.

2.4.7 Implementing Lists and Dictionaries

The Python language does not give us access to the implementation of lists, only to the sequence
abstraction and mutation methods built into the language. To understand how a mutable list could be
represented using functions with local state, we will now develop an implementation of a mutable
linked list.

https://www.composingprograms.com/pages/24-mutable-data.html

func make_wit!

func withdraw

10/16

7/1/24, 7:13 AM

2.4 Mutable Data

We will represent a mutable linked list by a function that has a linked list as its local state. Lists need
to have an identity, like any mutable value. In particular, we cannot use None to represent an empty
mutable list, because two empty lists are not identical values (e.g., appending to one does not
append to the other), but None is None. On the other hand, two different functions that each have empty
as their local state will suffice to distinguish two empty lists.

If a mutable linked list is a function, what arguments does it take? The answer exhibits a general
pattern in programming: the function is a dispatch function and its arguments are first a message,
followed by additional arguments to parameterize that method. This message is a string naming what
the function should do. Dispatch functions are effectively many functions in one: the message
determines the behavior of the function, and the additional arguments are used in that behavior.

Our mutable list will respond to five different messages: len, getitem, push_first, pop_first, and str.
The first two implement the behaviors of the sequence abstraction. The next two add or remove the
first element of the list. The final message returns a string representation of the whole linked list.

>>> def mutable_link():
"""Return a functional implementation of a mutable Linked List."""
contents = empty
def dispatch(message, value=None):
nonlocal contents

if message == 'len':

return len_link(contents)
elif message == 'getitem':

return getitem_link(contents, value)
elif message == 'push_first':

contents = link(value, contents)
elif message == 'pop_first':

f = first(contents)
contents = rest(contents)
return f
elif message == 'str':
return join_link(contents, ", ")
return dispatch

We can also add a convenience function to construct a functionally implemented linked list from any
built-in sequence, simply by adding each element in reverse order.

>>> def to_mutable_link(source):
"""Return a functional list with the same contents as source."""
s = mutable_link()
for element in reversed(source):
s('push_first', element)
return s

In the definition above, the function reversed takes and returns an iterable value; it is another example
of a function that processes sequences.

At this point, we can construct a functionally implemented mutable linked lists. Note that the linked list
itself is a function.

>>> s = to_mutable_link(suits)
>>> type(s)

<class 'function'>

>>> print(s(‘str'))

heart, diamond, spade, club

In addition, we can pass messages to the list s that change its contents, for instance removing the
first element.

>>> s('pop_first')
"heart"’

>>> print(s('str'))
diamond, spade, club

In principle, the operations push_first and pop_first suffice to make arbitrary changes to a list. We
can always empty out the list entirely and then replace its old contents with the desired result.

Message passing. Given some time, we could implement the many useful mutation operations of
Python lists, such as extend and insert. We would have a choice: we could implement them all as
functions, which use the existing messages pop_first and push_first to make all changes.
Alternatively, we could add additional e1if clauses to the body of dispatch, each checking for a
message (e.g., 'extend') and applying the appropriate change to contents directly.

This second approach, which encapsulates the logic for all operations on a data value within one
function that responds to different messages, is a discipline called message passing. A program that
uses message passing defines dispatch functions, each of which may have local state, and organizes
computation by passing "messages" as the first argument to those functions. The messages are
strings that correspond to particular behaviors.

https://www.composingprograms.com/pages/24-mutable-data.html

11/16

7/1/24, 7:13 AM

2.4 Mutable Data

Implementing Dictionaries. We can also implement a value with similar behavior to a dictionary. In
this case, we use a list of key-value pairs to store the contents of the dictionary. Each pair is a two-
element list.

>>> def dictionary():
"""Return a functional implementation of a dictionary."""
records = []
def getitem(key):
matches = [r for r in records if r[0] == key]
if len(matches) ==
key, value = matches[@]
return value
def setitem(key, value):
nonlocal records
non_matches = [r for r in records if r[@] != key]
records = non_matches + [[key, value]]
def dispatch(message, key=None, value=None):

if message == 'getitem':
return getitem(key)
elif message == 'setitem':

setitem(key, value)
return dispatch

Again, we use the message passing method to organize our implementation. We have supported two
messages: getitem and setitem. To insert a value for a key, we filter out any existing records with the
given key, then add one. In this way, we are assured that each key appears only once in records. To
look up a value for a key, we filter for the record that matches the given key. We can now use our
implementation to store and retrieve values.

>>> d = dictionary()
>>> d('setitem', 3, 9)
>>> d('setitem', 4, 16)
>>> d('getitem', 3)

9

>>> d('getitem', 4)

16

This implementation of a dictionary is not optimized for fast record lookup, because each call must
filter through all records. The built-in dictionary type is considerably more efficient. The way in which it
is implemented is beyond the scope of this text.

2.4.8 Dispatch Dictionaries

The dispatch function is a general method for implementing a message passing interface for abstract
data. To implement message dispatch, we have thus far used conditional statements to compare the
message string to a fixed set of known messages.

The built-in dictionary data type provides a general method for looking up a value for a key. Instead of
using conditionals to implement dispatching, we can use dictionaries with string keys.

The mutable account data type below is implemented as a dictionary. It has a constructor account and
selector check_balance, as well as functions to deposit or withdraw funds. Moreover, the local state of
the account is stored in the dictionary alongside the functions that implement its behavior.

8 dispatch['balance'] -= amount N ./——>
Global func accou

9 return dispatch['balance’]

10 dispatch = {'deposit': deposit, account I:/_\ﬂmc withd:

11 ‘withdraw': withdraw, withdraw I:’—\

12 'balance': initial_balance} deposit L func depos:

13 return dispatch check_balance L

14 func check:

15 def withdraw(account, amount): @ L

16 return account['withdraw'](amount) \

17 def deposit(account, amount): f1: account [parent=Globall

18 return account['deposit’'](amount) initial_balance IE

19 def check_balance(account): deposit L dict

20 return account['balance’] .

withdraw L "balance

21

22 a = account(20) dispatch L__ "deposit
» 23 deposit(a, 5) Return L__

24 withdraw(a, 17) value “withdraw

25 check_balance(a)

Edit code in Online Python Tutor

0

https://www.composingprograms.com/pages/24-mutable-data.html 12/16

7/1/24, 7:13 AM

2.4 Mutable Data

line that has just executed
» next line to execute

The name dispatch within the body of the account constructor is bound to a dictionary that contains the
messages accepted by an account as keys. The balance is a number, while the messages deposit
and withdraw are bound to functions. These functions have access to the dispatch dictionary, and so
they can read and change the balance. By storing the balance in the dispatch dictionary rather than in
the account frame directly, we avoid the need for nonlocal statements in deposit and withdraw.

The operators += and -= are shorthand in Python (and many other languages) for combined lookup
and re-assignment. The last two lines below are equivalent.

>>>a =2
>>> a a+1
>>> a +=1

2.4.9 Propagating Constraints

Mutable data allows us to simulate systems with change, but also allows us to build new kinds of
abstractions. In this extended example, we combine nonlocal assignment, lists, and dictionaries to
build a constraint-based system that supports computation in multiple directions. Expressing
programs as constraints is a type of declarative programming, in which a programmer declares the
structure of a problem to be solved, but abstracts away the details of exactly how the solution to the
problem is computed.

Computer programs are traditionally organized as one-directional computations, which perform
operations on pre-specified arguments to produce desired outputs. On the other hand, we often want
to model systems in terms of relations among quantities. For example, we previously considered the
ideal gas law, which relates the pressure (p), volume (v), quantity (n), and temperature (t) of an ideal
gas via Boltzmann's constant (k):

p*v=n*k*t

Such an equation is not one-directional. Given any four of the quantities, we can use this equation to
compute the fifth. Yet translating the equation into a traditional computer language would force us to
choose one of the quantities to be computed in terms of the other four. Thus, a function for computing
the pressure could not be used to compute the temperature, even though the computations of both
quantities arise from the same equation.

In this section, we sketch the design of a general model of linear relationships. We define primitive
constraints that hold between quantities, such as an adder(a, b, c) constraint that enforces the
mathematical relationship a + b = c.

We also define a means of combination, so that primitive constraints can be combined to express
more complex relations. In this way, our program resembles a programming language. We combine
constraints by constructing a network in which constraints are joined by connectors. A connector is an
object that "holds" a value and may participate in one or more constraints.

For example, we know that the relationship between Fahrenheit and Celsius temperatures is:
9 % c=5%(f - 32)

This equation is a complex constraint between c and f. Such a constraint can be thought of as a
network consisting of primitive adder, multiplier, and constant constraints.

celsius

fahrenheit

In this figure, we see on the left a multiplier box with three terminals, labeled a, b, and c. These
connect the multiplier to the rest of the network as follows: The a terminal is linked to a connector
celsius, which will hold the Celsius temperature. The b terminal is linked to a connector w, which is
also linked to a constant box that holds 9. The c terminal, which the multiplier box constrains to be the
product of a and b, is linked to the ¢ terminal of another multiplier box, whose b is connected to a
constant 5 and whose a is connected to one of the terms in the sum constraint.

Computation by such a network proceeds as follows: When a connector is given a value (by the user
or by a constraint box to which it is linked), it awakens all of its associated constraints (except for the
constraint that just awakened it) to inform them that it has a value. Each awakened constraint box

then polls its connectors to see if there is enough information to determine a value for a connector. If

https://www.composingprograms.com/pages/24-mutable-data.html

13/16

7/1/24, 7:13 AM 2.4 Mutable Data

so, the box sets that connector, which then awakens all of its associated constraints, and so on. For
instance, in conversion between Celsius and Fahrenheit, w, x, and y are immediately set by the
constant boxes to 9, 5, and 32, respectively. The connectors awaken the multipliers and the adder,
which determine that there is not enough information to proceed. If the user (or some other part of the
network) sets the celsius connector to a value (say 25), the leftmost multiplier will be awakened, and
it will set uto 25 * 9 = 225. Then u awakens the second multiplier, which sets v to 45, and v awakens
the adder, which sets the fahrenheit connector to 77.

Using the Constraint System. To use the constraint system to carry out the temperature
computation outlined above, we first create two named connectors, celsius and fahrenheit, by calling
the connector constructor.

>>> celsius = connector('Celsius")
>>> fahrenheit = connector('Fahrenheit")

Then, we link these connectors into a network that mirrors the figure above. The function converter
assembles the various connectors and constraints in the network.

>>> def converter(c, f):
"""Connect c¢ to f with constraints to convert from Celsius to Fahrenheit."""
u, v, W, X, y = [connector() for _ in range(5)]
multiplier(c, w, u)
multiplier(v, x, u)
adder(v, y, f)
constant(w, 9)
constant(x, 5)
constant(y, 32)

>>> converter(celsius, fahrenheit)

We will use a message passing system to coordinate constraints and connectors. Constraints are
dictionaries that do not hold local states themselves. Their responses to messages are non-pure
functions that change the connectors that they constrain.

Connectors are dictionaries that hold a current value and respond to messages that manipulate that
value. Constraints will not change the value of connectors directly, but instead will do so by sending
messages, so that the connector can notify other constraints in response to the change. In this way, a
connector represents a number, but also encapsulates connector behavior.

One message we can send to a connector is to set its value. Here, we (the 'user') set the value of
celsius to 25.

>>> celsius['set_val']('user', 25)
Celsius = 25
Fahrenheit = 77.0

Not only does the value of celsius change to 25, but its value propagates through the network, and so
the value of fahrenheit is changed as well. These changes are printed because we named these two
connectors when we constructed them.

Now we can try to set fahrenheit to a new value, say 212.

>>> fahrenheit['set_val']('user', 212)
Contradiction detected: 77.0 vs 212

The connector complains that it has sensed a contradiction: Its value is 77.0, and someone is trying
to set it to 212. If we really want to reuse the network with new values, we can tell celsius to forget its
old value:

>>> celsius['forget']('user")
Celsius is forgotten
Fahrenheit is forgotten

The connector celsius finds that the user, who set its value originally, is now retracting that value, so
celsius agrees to lose its value, and it informs the rest of the network of this fact. This information
eventually propagates to fahrenheit, which now finds that it has no reason for continuing to believe
that its own value is 77. Thus, it also gives up its value.

Now that fahrenheit has no value, we are free to set it to 212:

>>> fahrenheit['set_val']('user', 212)
Fahrenheit = 212
Celsius = 100.0

This new value, when propagated through the network, forces celsius to have a value of 100. We
have used the very same network to compute celsius given fahrenheit and to compute fahrenheit
given celsius. This non-directionality of computation is the distinguishing feature of constraint-based
systems.

https://www.composingprograms.com/pages/24-mutable-data.html 14/16

7/1/24, 7:13 AM 2.4 Mutable Data

Implementing the Constraint System. As we have seen, connectors are dictionaries that map
message names to function and data values. We will implement connectors that respond to the
following messages:

e connector['set_val'](source, value) indicates that the source is requesting the connector to set
its current value to value.

e connector['has_val']() returns whether the connector already has a value.

e connector['val'] is the current value of the connector.

e connector['forget'](source) tells the connector that the source is requesting it to forget its value.

e connector['connect'J(source) tells the connector to participate in a new constraint, the source.

Constraints are also dictionaries, which receive information from connectors by means of two
messages:

e constraint['new_val']() indicates that some connector that is connected to the constraint has a
new value.

e constraint['forget']() indicates that some connector that is connected to the constraint has
forgotten its value.

When constraints receive these messages, they propagate them appropriately to other connectors.

The adder function constructs an adder constraint over three connectors, where the first two must add
to the third: a + b = ¢. To support multidirectional constraint propagation, the adder must also specify
that it subtracts a from c to get b and likewise subtracts b from c to get a.

>>> from operator import add, sub

>>> def adder(a, b, c):
"""The constraint that a + b = c.
return make_ternary_constraint(a, b, c, add, sub, sub)

We would like to implement a generic ternary (three-way) constraint, which uses the three connectors
and three functions from adder to create a constraint that accepts new_val and forget messages. The
response to messages are local functions, which are placed in a dictionary called constraint.

>>> def make_ternary_constraint(a, b, ¢, ab, ca, cb):
"""The constraint that ab(a,b)=c and ca(c,a)=b and cb(c,b) = a."""
def new_value():
av, bv, cv = [connector['has_val']() for connector in (a, b, c)]
if av and bv:
c['set_val'](constraint, ab(a['val'], b['val']))
elif av and cv:
b['set_val'](constraint, ca(c['val'], a['val']))
elif bv and cv:
a['set_val'](constraint, cb(c['val'], b['val']))
def forget_value():
for connector in (a, b, c):
connector['forget'](constraint)
constraint = {'new_val': new_value, 'forget': forget_value}
for connector in (a, b, c):
connector['connect'](constraint)
return constraint

The dictionary called constraint is a dispatch dictionary, but also the constraint object itself. It
responds to the two messages that constraints receive, but is also passed as the source argument in
calls to its connectors.

The constraint's local function new_value is called whenever the constraint is informed that one of its
connectors has a value. This function first checks to see if both a and b have values. If so, it tells ¢ to
set its value to the return value of function ab, which is add in the case of an adder. The constraint
passes itself (constraint) as the source argument of the connector, which is the adder object. If a and b
do not both have values, then the constraint checks a and ¢, and so on.

If the constraint is informed that one of its connectors has forgotten its value, it requests that all of its
connectors now forget their values. (Only those values that were set by this constraint are actually
lost.)

Amultiplier is very similar to an adder.

>>> from operator import mul, truediv
>>> def multiplier(a, b, c):
"""The constraint that a * b = c.
return make_ternary_constraint(a, b, c, mul, truediv, truediv)

won

A constant is a constraint as well, but one that is never sent any messages, because it involves only a
single connector that it sets on construction.

>>> def constant(connector, value):
"""The constraint that connector = value.
constraint = {}

https://www.composingprograms.com/pages/24-mutable-data.html 15/16

7/1/24, 7:13 AM

2.4 Mutable Data

connector['set_val'](constraint, value)
return constraint

These three constraints are sufficient to implement our temperature conversion network.

Representing connectors. A connector is represented as a dictionary that contains a value, but also
has response functions with local state. The connector must track the informant that gave it its current
value, and a list of constraints in which it participates.

The constructor connector has local functions for setting and forgetting values, which are the
responses to messages from constraints.

>>> def connector(name=None):
"""A connector between constraints.
informant = None
constraints = []
def set_value(source, value):
nonlocal informant
val = connector(['val']
if val is None:
informant, connector['val'] = source, value
if name is not None:

print(name, '=', value)
inform_all_except(source, 'new_val', constraints)
else:
if val != value:

print('Contradiction detected:', val, 'vs', value)
def forget_value(source):
nonlocal informant
if informant == source:
informant, connector['val'] = None, None
if name is not None:
print(name, 'is forgotten')
inform_all_except(source, 'forget', constraints)
connector = {'val': None,
‘set_val': set_value,
‘forget': forget_value,
‘has_val': lambda: connector['val'] is not None,
‘connect': lambda source: constraints.append(source)}
return connector

A connector is again a dispatch dictionary for the five messages used by constraints to communicate
with connectors. Four responses are functions, and the final response is the value itself.

The local function set_value is called when there is a request to set the connector's value. If the
connector does not currently have a value, it will set its value and remember as informant the source
constraint that requested the value to be set. Then the connector will notify all of its participating
constraints except the constraint that requested the value to be set. This is accomplished using the
following iterative function.

>>> def inform_all_except(source, message, constraints):
"""Inform all constraints of the message, except source.
for c in constraints:
if ¢ != source:
c[message]()

If a connector is asked to forget its value, it calls the local function forget-value, which first checks to
make sure that the request is coming from the same constraint that set the value originally. If so, the
connector informs its associated constraints about the loss of the value.

The response to the message has_val indicates whether the connector has a value. The response to
the message connect adds the source constraint to the list of constraints.

The constraint program we have designed introduces many ideas that will appear again in object-
oriented programming. Constraints and connectors are both abstractions that are manipulated
through messages. When the value of a connector is changed, it is changed via a message that not
only changes the value, but validates it (checking the source) and propagates its effects (informing
other constraints). In fact, we will use a similar architecture of dictionaries with string-valued keys and
functional values to implement an object-oriented system later in this chapter.

Continue: 2.5 Object-Oriented Programming

Composing Programs by John DeNero, based on the textbook Structure and Interpretation of Computer Programs by Harold Abelson and Gerald Jay Sussman, is licensed under a Creative
Commons Attribution-ShareAlike 3.0 Unported License.

https://www.composingprograms.com/pages/24-mutable-data.html

16/16

