71124, 7:47 AM Lab 7: Inheritance, Linked Lists | CS 61A Spring 2024

Lab 7: Inheritance, Linked Lists
[lab07.zip (lab07.zip)]

Due by 11:59pm on Wednesday, March 13.

Starter Files

Download lab07.zip (lab07.zip). Inside the archive, you will find starter files for the questions
in this lab, along with a copy of the Ok (ok) autograder.

Required Questions

{ Getting Started Videos]

Inheritance

Consult the drop-down if you need a refresher on Inheritance. It's okay to skip directly to the

questions and refer back here should you get stuck. { Inheritance J

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab07/ 1/10

7/1/24, 7:47 AM

Q1: WWPD: Inheritance ABCs

>>>

>>>

>>>

python3 ok -gq inheritance-abc -u

class A:
X, y=0,0
def __init__(self):
return
class B(A):
def __init__(self):
return
class C(A):
def __init__(self):
return
print(A.x, B.x, C.x)

A.x +=1

obj = CQ)

obj.y =1

C.y == obj.y

A.y = obj.y

print(A.y, B.y, C.y, obj.y)

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab07/

Lab 7: Inheritance, Linked Lists | CS 61A Spring 2024

Important: For all WWPD questions, type Function if you believe the answer is
<function...>, Error if it errors, and Nothing if nothing is displayed.

Use Ok to test your knowledge with the following "What Would Python Display?"
questions:

Qo

2/10

71124, 7:47 AM Lab 7: Inheritance, Linked Lists | CS 61A Spring 2024

Class Practice

Let's say we'd like to model a bank account that can handle interactions such as depositing
funds or gaining interest on current funds. In the following questions, we will be building off
of the Account class. Here's our current definition of the class:

class Account:
"""An account has a balance and a holder.
>>> a = Account('John')
>>> a.deposit(10)
10
>>> a.balance
10
>>> a.interest
0.02
>>> a.time_to_retire(10.25) # 10 -> 10.2 -> 10.404
2
>>> a.balance # Calling time_to_retire method should not change the ba:
10
>>> a.time_to_retire(11) # 10 -> 10.2 -> ... -> 11.040808032
5
>>> a.time_to_retire(100)
117
max_withdrawal = 10
interest = 0.02

def __init__(self, account_holder):
self.balance = 0
self.holder = account_holder

def deposit(self, amount):
self.balance = self.balance + amount
return self.balance

def withdraw(self, amount):
if amount > self.balance:
return "Insufficient funds"
if amount > self.max_withdrawal:
return "Can't withdraw that amount"
self.balance = self.balance - amount
return self.balance

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab07/ 3/10

71124, 7:47 AM Lab 7: Inheritance, Linked Lists | CS 61A Spring 2024
Q2: Retirement

Add a time_to_retire method to the Account class. This method takes in an amount and
returns how many years the holder would need to wait in order for the current balance to
grow to at least amount, assuming that the bank adds the interest (calculated as the current
balance multiplied by the interest rate) to the balance at the end of each year.

def time_to_retire(self, amount):
"""Return the number of years until balance would grow to amount."""
assert self.balance > 0 and amount > @ and self.interest > @
"%%% YOUR CODE HERE **%"

Use Ok to test your code:

python3 ok -g Account %

Q3: FreeChecking

Implement the FreeChecking class, which is like the Account class from lecture except that
it charges a withdraw fee withdraw_fee after withdrawing free_withdrawals number of times.
If a withdrawal is unsuccessful, it still counts towards the number of free withdrawals
remaining, but no fee for the withdrawal will be charged.

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab07/ 4/10

71124, 7:47 AM Lab 7: Inheritance, Linked Lists | CS 61A Spring 2024

class FreeChecking(Account):
"""A bank account that charges for withdrawals, but the first two are free!
>>> ch = FreeChecking('Jack"')
>>> ch.balance = 20

>>> ch.withdraw(100) # First one's free. Still counts as a free withdrawal even thou

'Insufficient funds'

>>> ch.withdraw(3) # Second withdrawal is also free
17

>>> ch.balance

17

>>> ch.withdraw(3) # 0Ok, two free withdrawals is enough, as free_withdrawals is on.

13
>>> ch.withdraw(3)

>>> ch2 = FreeChecking('John')
>>> ch2.balance = 10
>>> ch2.withdraw(3) # No fee

>>> ch.withdraw(3) # ch still charges a fee

5

>>> ch.withdraw(5) # Not enough to cover fee + withdraw
'Insufficient funds'

withdraw_fee = 1

free_withdrawals = 2

"x*%%* YOUR CODE HERE *#*x"

Use Ok to test your code:

python3 ok -q FreeChecking

Linked Lists

Consult the drop-down if you need a refresher on Linked Lists. It's okay to skip directly to

the questions and refer back here should you get stuck.

[Linked Lists }

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab07/

5/10

71124, 7:47 AM Lab 7: Inheritance, Linked Lists | CS 61A Spring 2024

Q4: WWPD: Linked Lists

Read over the Link class. Make sure you understand the doctests.

Use Ok to test your knowledge with the following "What Would Python Display?"
questions:

python3 ok -g link -u

Enter Function if you believe the answer is <function ...>, Error ifit errors, and
Nothing if nothing is displayed.

If you get stuck, try drawing out the box-and-pointer diagram for the linked list on a
piece of paper or loading the Link class into the interpreter with python3 -i 1ab@8.py .

>>> link = Link(1000)
>>> link.first

>>> link.rest is Link.empty

\4
\/
\4
—
[N
>
~
1

Link(1000, 2000)

\4
\
\4
—
[
>
~
1

Link(1000, Link())

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab07/ 6/10

7/1/24, 7:47 AM

>>>
>>>

link

link.

link

Lab 7: Inheritance, Linked Lists | CS 61A Spring 2024

= Link(1, Link(2, Link(3)))
first

.rest.first

.rest.rest.rest is Link.empty

.first = 9001
.first

.rest = link.rest.rest
.rest.first

= Link(1)

.rest = link
.rest.rest is Link.empty

.rest.rest.rest.rest.first

= Link(2, Link(3, Link(4)))

link2 = Link(1, 1link)
link2.first

link = Link(5, Link(6, Link(7)))
link # Look at the
print(link)

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab07/

method of Link

Look at the str method of Link

7/10

71124, 7:47 AM Lab 7: Inheritance, Linked Lists | CS 61A Spring 2024
Q5: Duplicate Link

Write a function duplicate_link that takes in a linked list s and a value val. It mutates s
so that each element equal to val is followed by an additional val (a duplicate copy). It
returns None.

Note: In order to insert a link into a linked list, reassign the rest attribute of the Link
instances that have val as their first. Try drawing out a doctest to visualize!

def duplicate_link(s, val):
"""Mutates s so that each element equal to val is followed by another val.

>>> x = Link(5, Link(4, Link(5)))

>>> duplicate_link(x, 5)

>>> X

Link(5, Link(5, Link(4, Link(5, Link(5)))))
>>>y = Link(2, Link(4, Link(6, Link(8))))
>>> duplicate_link(y, 10)

>>> y

Link(2, Link(4, Link(6, Link(8))))

>>> z = Link(1, Link(2, (Link(2, Link(3)))))
>>> duplicate_link(z, 2) # ensures that back to back links with val are both duplicate
>>> 7

Link(1, Link(2, Link(2, Link(2, Link(2, Link(3))))))

"x*%%* YOUR CODE HERE *#*x"

Use Ok to test your code:

python3 ok -q duplicate_link %

Check Your Score Locally

You can locally check your score on each question of this assignment by running
python3 ok --score

This does NOT submit the assignment! When you are satisfied with your score, submit the
assignment to Gradescope to receive credit for it.

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab07/

8/10

71124, 7:47 AM Lab 7: Inheritance, Linked Lists | CS 61A Spring 2024

Submit

Submit this assignment by uploading any files you've edited to the appropriate Gradescope
assignment. Lab 00 (https://cs61a.org/lab/lab00/#submit-with-gradescope) has detailed
instructions.

In addition, all students who are not in the mega lab must complete this attendance form
(https://go.cs61a.org/lab-att). Submit this form each week, whether you attend lab or missed
it for a good reason. The attendance form is not required for mega section students.

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab07/ 9/10

71124, 7:47 AM Lab 7: Inheritance, Linked Lists | CS 61A Spring 2024

https://inst.eecs.berkeley.edu/~cs61a/sp24/lab/lab07/ 10/10

