= (C CS61B Textbook Q

27.2 Complexity

Restrictions of Engineering

In other engineering disciplines, we are subject to the laws of nature. Objects have limits on
how fast they can move, on how dense they can be, on how much of it there is.

Chemical engineers worry about temperature
Material scientists worry about how brittle material is

Civil engineers worry about the strength of concrete

However, in computer science, we've solved most of these constraints already - the sum
power of Apollo missions to get us to the moon is less than the computing power of your
phone.

The Power of Software

Computers have evolved over time from being large calculators to fine-tuned machines to
being multi-purpose and powerful. Video games, for example, used to be customized for
the limitations of operating systems but now can be built in frameworks and abstractions.

From this, the limitation is no longer the limit of computing powers; it is from the ways that
we plan and design what we build. Further:

An individual programmer is no longer able to effectively manage the entire software
system for a large project

Spotify, for example, has over a billion lines of code and 60 million used in production

Any one programmer should only need to understand a fraction of the codebase

A Definition of Complexity



“Anything related to the structure of a software system that makes it hard to understand
and modify it’ - John Ousterhout, “A Philosophy of Software Design”

As programs have more features and functionality, their complexity increases exponentially.
Consider Spotify adding a queue feature; it has to work, but it also needs to work with
everything already implemented such as play/pause, search, skip, etc.

Complex systems are not a goal; our goal is to keep software simple. Complex systems:

Take longer to understand how code works
Are more difficult to fix bugs with confidence
Harder to find what needs to change
Unknown unknowns: unclear what needs to be known to make modifications

Very common in large codebases

Managing Complexity
There are two kinds of complexity:

Unavoidable (Essential) Complexity
To implement certain features, that feature carries some level of inherent complexity
with it

Avoidable Complexity

Complexity that we can address with our choices
In response to avoidable complexity, we can:

Make code simpler and more obvious

Using sentinel nodes in Project 1 made life significantly easier to avoid dealing with
edge cases

Modules as a means of abstraction: the ability to use a piece without understanding how
it works based on some specification

Interfaces are an example - HashMap, BSTMap from lab are both Maps and can be
used with get and put for some key-value pairs without understanding the
underlying implementation



Previous
27.1 Introduction to Software Engineering

Next
27.3 Strategic vs Tactical Programming



