= (C CS61B Textbook Q

27.3 Strategic vs Tactical Programming

Tactical Programming

The goal is to get something working quickly, often using workarounds. Consider code that
has many if statements to handle many separate cases to pass autograder tests that is
challenging to update and explain.

Prototypes, proof-of-concepts often leverage tactical programming, to show that
something could theoretically work.

However:

There’s no time spent on overall design
Code is complicated
Refactoring takes time and potentially means restarting

If you didn't plan for Project 2 runtime requirements, you would have to redo the
constructor and the entire project

Proof of concepts are sometimes deployed in the real world due to lack of time

Strategic Programming

The goal is to write code that works elegantly - at the cost of planning time, to reduce
coding time. This emphasizes long term strategy.

Code should be:

Maintainable to fix bugs
Simple to understand
Future-proof to add new functionality

61B projects have deadlines; afterwards, you can throw it away



If the strategy is insufficient, go back to the drawing board before continuing work.

Helper method strategy is key to leverage throughout projects, especially when we have
written comprehensive tests to ensure that these methods are correct.

Previous
27.2 Complexity

Next
27.4 Real World Examples



