Web Videos Images Shopping Books

e

Aad your,conclusion Invalld a2

Lecture 28

Tries

CS61B, Spring 2024 @ UC Berkeley
Slides credit: Josh Hug

More ~

Trei

Search tools

Tire

SafeSearch ~

Tries (Conceptual)

Tries (Conceptual)

Lecture 28, CS61B, Spring 2024

Abstract Data Types vs. Specific Implementations

There are many ways to implement an abstract data type.
e Today we'll talk about a new way to build a set/map.

Heap
Separate Chaining PQ Balanced Tree
Hash Table
y, Ordered Linked List
Set LinkedList
Resizing Array List < LinkedList
M = = 2 q
ap s ~ Resizing Array
BST (Vanilla) Quick Find
i | . Quick Union
BT (2-3/ 2-3.4) DisjointSets
-Trees (2-3 / 2-3- :
< — Weighted QU
Heap WQUPC

BST and Hash Table Set Runtimes

Runtimes for our Balanced Search Tree
and Hash Table implementations were
very fast.

If we know that our keys all have some
common special property, we can
sometimes get even better
implementations.

Example: Suppose we know our keys
are always single ASCII characters.

[R Y e B i R

e eg.4a,qg,’!

contains(x)

add(x)

Balanced BST

O(log N)

O(log N)

Resizing Separate
Chaining Hash Table

e(1)

assuming even spread

o(1)

on average,
assuming even spread

Special Case 1: Character Keyed Map

Suppose we know that our keys are
always ASCII characters.

e (Can just use an array!
e Simple and fast.

public class DataIndexedCharMap<V> {

private V[] items;

public DataIndexedCharMap(int R) {
items = (V[]) new Object[R];

}

public void put(char c, V val) {
items[c] = val;

}

public V get(char c) {
return items[c];

}

key type get(x) add(x)
Balanced BST comparable O(log N) O(log N)
Resizing Separate hashable 0(1) 0(1)
Chaining Hash Table RSN SENIEET | pssuming even spread
data indexed array chars (1) (1)

S

OO0

R is the number of possible
characters, e.g. 128 for ASCII.

Special Case 2: String Keyed Map

Suppose we know that our keys are
always strings.

e Can use a special data structure
known as a Trie.

e Basic idea: Store each letter of the
string as a node in a tree.

Tries will have great performance on:
e (et
e add
e special string operations

key type get(x) add(x)
Balanced BST comparable O(log N) O(log N)
Resizing Separate hashable 0(1) 0(1)
Chaining Hash Table RSN SENIEET | pssuming even spread
data indexed array chars (1) (1)
Tries Strings ? ?

Sets of Strings

Suppose we have a set containing “sam

sad

N

awls

i

a

same

AN

)

Sam

sap

R

BST

n u

sad

n u n u

sad ——» sam

awls

a — sap

same

Hash Table

n u_n

, ‘'sap”, “same”, “a
Below, we see the BST and Hash Table representation.

, and “awls”.

Tries: Each Node Stores One Character

For String keys, we can use a “Trie". Key ideas:
e Every node stores only one letter.
e Nodes can be shared by multiple keys.

)
(+)

Above, we show the results of adding “sam” and sad”. Use your intuition to try to

n u n u_n

insert the remaining items “sap”, “same”, “a”, and “awls”.

Tries: Each Node Stores One Character

For String keys, we can use a “Trie". Key ideas: ‘
e Every node stores only one letter.

e Nodes can be shared by multiple keys. e °

Above, we show the results of adding “sam” and sad”. Use your intuition to try to

n u n u_n

insert the remaining items “sap”, “same”, “a”, and “awls”.

Tries: Each Node Stores One Character

For String keys, we can use a “Trie". Key ideas:
e Every node stores only one letter. ‘
e Nodes can be shared by multiple keys. a a

n u n u

Try to figure out a way to make it clear that our set contains “sam”, “sad”, “sap”,

n u_n n u

“same”, “a”, and “awls”, but not “aw”,

n u

awl”, “sa”, etc.

Tries: Each Node Stores One Character

For String keys, we can use a “Trie". Key ideas:
e Every node stores only one letter. ‘
e Nodes can be shared by multiple keys. ° H

n u n u

Try to figure out a way to make it clear that our set contains “sam”, “sad”, “sap”,

n u_n n u

“same”, “a”, and “awls”, but not “aw”,

n u

awl”, “sa’, etc.

Tries: Search Hits and Misses

Suppose we insert “sam”, “sad”, “sap”, “same”, “a”, and “awls”.

n u n u n u n ua_n

_true, blue

contains(“sam”):

fu_my. pode :
contains(“sa”): false, white node "
contains(“a”): true, blue node - “hit”

MmiSS"

Two ways to have a search “miss”:

If the final node is white.
If we fall off the tree, e.g. contains(“sax”).

n

Trie Maps

Tries can also be maps, of course. —}

e s -
EE e h% E:

E 6 1 e | 9 0 e |5
e.g. maps “by” to 4. S S T L D I LA
s |1 1 e | 7
s 3

For an animated demo of the creation of this map, see this demo from our
tional Algorithms textbook. I

http://www.cs.princeton.edu/courses/archive/spring15/cos226/demo/52DemoTrie.mov

Tries: A Digit-by-Digit Set Representation

sad 0

awls same

a Sam sap Same e e

BST HashSet

\
\
/

iiii
|
©
©
O
©

Tries

Trie;
e Short for Retrieval Tree.

e Inventor Edward Fredkin suggested it should be pronounced “tree”, but almost
everyone pronounces it like “try”.

Why did Edward Fredkin choose that word? | edit]

Since he pronounced it homophonous to ‘tree’, didn't he realize that it was a
pretty stupid choice, because that would make it impossible to distinguish the
words in speech? If he was so desperate to combine ‘tree’ and ‘retrieve’, surely
he could have done better? Shinobu (talk) 22:06, 5 October 2008 (UTC) [reply]

Trie Implementation and
Performance

Trie
Implementation
and Performance

Lecture 28, CS61B, Spring 2024

Very Basic Trie Implementation

The first approach might look something like the code below.
e Each node stores a letter, a map from c to all child nodes, and a color.

public class TrieSet {
private static final int R = 128; // ASCII
private Node root; // root of trie ‘

private static class Node {
private char ch;
private boolean isKey;
private DatalndexedCharMap<Node> next;
private Node(char c, boolean b, int R) {
ch = ¢; isKey = b;
next = new DataIndexedCharMap<>(R);

Since we know our keys are characters,
} can use a DatalndexedCharMap.

0l

Zooming in On a Node

Each DatalndexedCharMap is an array of 128 possible links, mostly null.

private static class Node {
private char ch;
private boolean isKey;
private DatalndexedCharMap<Node> next;
private Node(char c, boolean b, int R) {
ch = ¢; isKey = b;
next = new DataIndexedCharMap<>(R);

Zooming in On a Node

Better drawing of a DatalndexedCharMap based trie is shown to the right.

private static class Node {
private char ch;
private boolean isKey;
private DatalndexedCharMap<Node> next;
private Node(char c, boolean b, int R) {
ch = ¢; isKey = b;
next = new DataIndexedCharMap<>(R);

128 links, with one used, and 127

‘//////////////-equalk)nuw

w

oL

Very Basic Trie Implementation

If we use a DatalndexedCharMap to track children, every node has R links.

private static class Node { ‘
private char ch; a
private boolean isKey;
private DatalndexedCharMap<Node> next; a
private Node(char c, boolean b, int R) { ‘ w
ch = c; isKey = b; Q
next = new DatalndexedCharMap<>(R);
I public class DataIndexedCharMap<V> { |

private V[] items; °

public DataIndexedCharMap(int R) { °
items = (V[]) new Object[R];

}

Very Basic Trie Implementation

Observation: The letter stored inside each node is actually redundant.
e Canremove from the representation and things will work fine.

public class TrieSet { ‘
private static final int R = 128; // ASCII a
private Node root; // root of trie ‘
private static class Node { ‘ w
private boolean isKey;

private DatalndexedCharMap<Node> next;

private Node(ehar—e5—boolean b, int R) { N
eh———-€4—isKey = b; ‘
next = new DataIndexedCharMap<>(R);

0l

Trie Performance in Terms of N

Given a Trie with N keys. What is the:

e Add runtime?
e (Contains runtime?

Trie Performance in Terms of N

Given a Trie with N keys. What is the:

e Add runtime? ©(1)
e Contains runtime? 0(1)

Runtimes independent of number of keys!

Or in terms of L, the length of the key:

e Add: O(L)
e Contains: O(L)

Trie Performance in Terms of N

When our keys are strings, Tries give us
slightly better performance on contains
and add.

One downside of the DatalndexedCharMap-based Trie is the huge memory cost

of storing R links per node.

Runtimes treating length of keys as a constant

key type get(x) add(x)
Balanced BST comparable O(log N) O(log N)
Resizing Separate hashable 0(1) 0(1)
Chaining Hash Table RSN SENIEET | pssuming even spread
data indexed array chars (1) (1)
Tries Strings (1) (1)

e Wasteful because most links are unused in real world usage.

Altern ate Ch |Id Alternate Child Tracking Strategies
Tracking
Strategies

Lecture 28, CS61B, Spring 2024

Trie Performance in Terms of N

Using a DatalndexedCharMap is very memory hungry.
e Every node has to store R links, most of which are null.

private static class Node {
private boolean isKey;
private DatalndexedCharMap<Node> next;

private Node(char c, boolean b, int R) { ‘
ch = c; isKey= b;
next = new DataIndexedCharMap<>(R);

a.lang. Object] |
P P PR s o us |us |u7 |us |1 : 23 |14 |15 |16 |1
/ null | null | null | null | null | null | null | null | null | null | null e null | null | null | null o[null | null | null | null | null | null ‘ null | null

The DatalndexedCharMap Trie

Can use ANY kind of map from
character to node, e.g.

e BST
e Hash Table

isKey: | F isKey: | T
links: links:
Zz
97 98 99 _100 97 98 99 100
y 3
iskey: | T
links: Fundamental problem,
our arrays are ‘sparse’.
97 98 99 100

Alternate Idea #1: The Hash-Table Based Trie

isKey:
links:
0 /
1
2
/‘/3/—
w s
iskey: | F
links:
0| —+>d
1
2
3

Alternate Idea #2: The BST-Based Trie

Q0Ele

The Three Trie Implementations

When we implement a Trie, we have to pick a map to our children
e DatalndexedCharMap: Very fast, but memory hungry.
e Hash Table: AlImost as fast, uses less memory.

e Balanced BST: A little slower than Hash Table, uses similar amount of
memory?

Do N

DatalndexedCharMap ,“,*’

|| dictionary
2| from letter | s .
: to Node = | Hash Table
this.next) I

'-;"_ ¢ Balanced BST e

Performance of the DatalndexedCharMap, BST, and Hash Table Trie

Using a BST or a Hash Table to store links to children will usually use less
memory.

e DatalndexedCharMap: 128 links per node.
e BST: C links per node, where C is the number of children.

e Hash Table: C links per node. ‘
e Note: Cost per link is higher in BST and Hash Table.

Using a BST or a Hash Table will take slightly more time.
e DatalndexedCharMap is ©(1).
e BSTis O(log R), where R is size of alphabet.

e Hash Table is O(R), where R is size of alphabet.

Since Ris fixed (e.g. 128), can think of all 3 as ©(1).

Trie Performance in Terms of N

When our keys are strings, Tries give us
slightly better performance on contains
and add.

e Using BST or Hash Table will be
slightly slower, but more memory
efficient.

e Would have to do computational
experiments to see which is best
for your application.

Runtimes treating length of keys as a constant

key type get(x) add(x)
Balanced BST comparable O(log N) O(log N)
Resizing Separate hashable 0(1) 0(1)
Chaining Hash Table RSN SENIEET | pssuming even spread
data indexed array chars (1) (1)
Tries (BST, Hash Strings (1) (1)

Table, Data Indexed

Char Map)

.. but where Tries really shine is their efficiency with special string operations!

Trie String Operations

Trie String
Operations

Lecture 28, CS61B, Spring 2024

String Specific Operations

Theoretical asymptotic speed improvement is nice. But the main appeal of tries is
their ability to efficiently support string specific operations like prefix matching.

e Finding all keys that match a given prefix: keysWithPrefix("sa"
e Finding longest prefix of: longestPrefix0f("sample")

sad
0| —ft—>» sad ——» sanm /\ a e
1 —+—» awl
awis awls same
2 —+—> a —> sap / /\
3 —1 same a S sap c 0 “ Q

Prefix Matching Operations

Theoretical asymptotic speed improvement is nice. But the main appeal of tries is
their ability to efficiently support string specific operations like prefix matching.

Examples:

‘ e Finding the longest prefix of a string:
longestPrefixOf("sample")
o Result: sam
e Finding all keys that match a given prefix:
keysWithPrefix("sa"

o Result: [sad, sam, same, sap]

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.

collect() returns ["a", "awls", "sad", "sam", "same", "sap"]

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.

collect() returns ["a", "awls", "sad", "sam", "same", "sap"]

collect():
e Create an empty list of results x.
e Forcharacter c in root.next.keys(): ‘

o Call colHelp(c, x, root.next.get(c)).
e Return x.

colHelp(String s, List<String> x, Node n):

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.

collect() returns ["a", "awls", "sad", "sam", "same", "sap"]

collect():
e Create an empty list of results x.
e For character c in root.next.keys():
o Call colHelp(c, x, root.next.get(c)).
e Return x.

colHelp(String s, List<String> x, Node n):
e Ifn.isKey,then x.add(s).
e For character cin n.next.keys():

o Call colHelp(s + c, X, n.next.get(c))

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.
collect():
e Create an empty list of results x.
e For character c in root.next.keys(): x =[]
o Call colHelp(c, x, root.next.get(c)).

e Return x. ‘

colHelp("a", x,) 6
colHelp(String s, List<String> x, Node n):
e Ifn.isKey,then x.add(s). °

e For character cin n.next.keys():

o Call colHelp(s + c, X, n.next.get(c))

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.
collect():
e Create an empty list of results x.
e For character c in root.next.keys(): x = ["a"]
o Call colHelp(c, x, root.next.get(c)).
e Return x.
colHelp("a", x,
colHelp(String s, List<String> x, Node n):
e Ifn.isKey,then x.add(s). colHelp("aw", X,
e For character cin n.next.keys():
o Call colHelp(s + c, X, n.next.get(c))

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.
collect():

e Create an empty list of results x.
e For character c in root.next.keys(): x = ["a"]

o Call colHelp(c, x, root.next.get(c)).
e Return x.

colHelp("a", x,
colHelp(String s, List<String> x, Node n):

e |Ifn.isKey,then x.add(s).
e For character cin n.next.keys():

colHelp("aw", x,

colHelp("awl", x,
o Call colHelp(s + c, X, n.next.get(c))

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.
collect():

e Create an empty list of results x.

e Forcharacter c in root.next.keys():

o Call colHelp(c, x, root.next.get(c)).

e Return x.

colHelp("a", x,
colHelp(String s, List<String> x, Node n):

e |Ifn.isKey,then x.add(s).

colHelp("aw", x,
[

For character c in n.next.keys():

colHelp("awl", x,
o Call colHelp(s + c, X, n.next.get(c))

colHelp("awls", x,

()OS

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.
collect():

e Create an empty list of results x.

e Forcharacter c in root.next.keys():

o Call colHelp(c, x, root.next.get(c)).

e Return x.

colHelp("a", x,
colHelp(String s, List<String> x, Node n):
e Ifn.isKey,then x.add(s).

colHelp("aw", x,

For character c in n.next.keys():

colHelp("awl", x,
o Call colHelp(s + c, X, n.next.get(c))

colHelp("awls", x,

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.
collect():
e Create an empty list of results x.
e For character cin root.next.keys():
o Call colHelp(c, x, root.next.get(c)).
e Return x.

colHelp(String s, List<String> x, Node n):
e |Ifn.isKey,then x.add(s).
e For character cin n.next.keys():

o Call colHelp(s + c, X, n.next.get(c))

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.
collect():
e Create an empty list of results x.
e Forcharacter c in root.next.keys():
o Call colHelp(c, x, root.next.get(c)).
e Return x.

colHelp(String s, List<String> x, Node n):
e |Ifn.isKey,then x.add(s).
e For character cin n.next.keys():

o Call colHelp(s + c, X, n.next.get(c))

Challenging Warmup Exercise: Collecting Trie Keys

Challenging Exercise: Give an algorithm for collecting all the keys in a Trie.

collect():
e Create an empty list of results x.
e For character cin root.next.keys():
o Call colHelp(c, x, root.next.get(c)).
e Return x.

colHelp(String s, List<String> x, Node n):
e Ifn.isKey,then x.add(s).
e Forcharacter cinn.next.keys():

o Call colHelp(s + c, X, n.next.get(c))

X - [llall, Ilawlsll, llsadll,
llsamll’ llsamell, "Sap"]

Usages of Tries

Challenge: Give an algorithm for keysWithPrefix.
e Example: keysWithPrefix("sa") is["sad", "sam", "same", "sap"].

Usages of Tries

Challenge: Give an algorithm for keysWithPrefix.
e Example: keysWithPrefix("sa") is["sad", "sam", "same", "sap"].

Algorithm:
e Find the node o corresponding to the string (in pink).
e Create an empty list x. ‘

e For character cina.next.keys():
o Call colHelp("sa" + c, x, a.next.get(c)).

Another common operation: LongestPrefix0f. See lab.

Autocomplete

Autocomplete

Lecture 28, CS61B, Spring 2024

The Autocomplete Problem

Example, when | type “how are” into Google, | get 10
results, shown to the right.

One way to do this is to create a Trie based map
from strings to values

e Value represents how important Google thinks
that string is.

e Can store billions of strings efficiently since
they share nodes.

e When a user types in a string “hello”, we:
o Call keysWithPrefix("hello").

o Return the 10 strings with the highest
value.

how are

(=

how are you

how are you in spanish

how are you doing

how are you in french

how are babies made

how are metamorphic rocks formed
how are igneous rocks formed

how are sedimentary rocks formed
how are you in japanese

how are bonuses taxed

Google Search I'm Feeling Lucky

Autocomplete Example, for Top Three Matches

Suppose we have six strings with values shown below:

e buck: 10
e sad:12

® sSmMog: 5
e spit:15

e spite: 20
e spy./

“"_n

If the user types “s”, we:
e Call keysWithPrefix("s").
o sad, smog, spit, spite, spy
e Return the three keys with highest value.

o spit, spite, sad

Autocomplete Example, for Top Three Matches

Suppose we have six strings with values shown below:

e buck: 10
e sad:12

® sSmMog: 5
e spit:15

e spite: 20
e spy./

“"_n

If the user types “s”, we:
e Call keysWithPrefix("s").
o sad, smog, spit, spite, spy
e Return the three keys with highest value.

o spit, spite, sad

The Autocomplete Problem

One way to do this is to create a Trie based Dictionary that maps strings to values.
e When a user types in a string hello, we:
o Call keysWithPrefix("hello").
o Return the ten strings with the highest value.

The approach above has one major flaw. If we enter a short string, the number of
keys with the appropriate prefix will be too big.

e We are collecting billions of results only to keep 10!
e This is extremely inefficient.

A More Efficient Autocomplete

One way to address this issue:

e Each node stores its own
value, as well as the value
of its best substring.

value = None
best = 20

A More Efficient Autocomplete

One way to address this issue:

e Each node stores its own
value, as well as the value
of its best substring.

None
10
Search will consider nodes in None
order of “best”. 10
e Consider ‘sp’ before 'sm'. N
one
e Can stop whentop 3 10
matches are all better than
best remaining. 18

value = None
best = 20

Even More Efficient Autocomplete

Can also merge nodes that are
redundant! value = None
best = 20

e This version of trie is
known as a “radix tree” or
“radix trie”.

e Won't discuss.

Trie Summary Trie Summary

Lecture 28, CS61B, Spring 2024

Tries

When your key is a string, you can use a Trie:

e Theoretically better performance than hash table or search tree.

e Have to decide on a mapping from letter to node. Three natural choices:
o DatalndexedCharMap, i.e. an array of all possible child links.
o Bushy BST.
o Hash Table.

e All three choices are fine, though hash table is probably the most natural.

e Supports special string operations like longestPrefixOf and keysWithPrefix.
o keysWithPrefix is the heart of important technology like autocomplete.

o Optimal implementation of Autocomplete involves use of a priority
queue!

Bottom line: Data structures interact in beautiful and important ways!

Domain Specific Sets and Maps

More generally, we can sometimes take special advantage of our key type to
improve our sets and maps.

e Example: Tries handle String keys. Allow for fast string specific operations.
e Note: There are many other types of string sets/maps out there.

o Suffix Trees (Link).

o DAWG (Link).

o Won't discuss in our course.

https://en.wikipedia.org/wiki/Suffix_tree
https://en.wikipedia.org/wiki/Deterministic_acyclic_finite_state_automaton

