= (C CS61B Textbook Q

31.3 Modular Design

A tool for managing complexity.

Modular design is a powerful tool for managing complexity because it divides the project
complexity into manageable pieces. One way to implement modular design is to create
helper methods or interfaces. This way, the programmer can individually handle each
component of complexity rather than having to always keep track of the details of every
piece of code that they write.

Modules should be simple:

In an ideal world, every module is totally independent from one another. Unfortunately, this
is not possible because code from each module needs to call other modules. However, we
can still try to minimize these dependencies between modules! In other words, we want to
minimize how many things you need to know about a given module in order to use it. This is
exactly what we mean when we talk about the difference between implementation versus
interface. A good module will not require the user to know the specific implementation in
order to use it. Rather, it should be sufficient to just know the interface of the module.
Changing the implementation of a module should not affect the interface.

John Ousterhout once said: "The best modules are those whose interfaces are much
simpler than their implementation." This is a good rule to swear by, and putting it into
practice will save a lot of headache.

One other technique of minimizing complexity is to restrict what the user can do. If a user
does not need to interact with an instance variable, then don't give them access to it.

Interface rules:

Interfaces have a further set of rules. These rules are divided into formal and informal rules.
The difference between the two is that informal rules are not enforced by the compiler.

Formal rules are the list of method signatures. If a method is not implemented in a class
that implements the interface, then the compiler will give an error.

Some examples of informal rules are:

If your iterator class does not call hasNext() on its own (for some reason) and instead
requires the user to call it.

Any exceptions that are thrown.

Any runtime specifications.

Be especially wary of informal rules! They are hard to keep track of.

Modules should be deep

Another cool idea is that Modules should be deep. Their simple interfaces but powerful
functionality. We do this a lot like thats the 61B story! A set for example is a deep module
that has power functioanlity and simple interfaces. So Red Black BSTs is very deep. | can
add, contain, and delete, and there is nothing informal | need to know, it's all under the
hood. Powerful functionality means that all operations are efficient. Tree balancing is
maintained using sophisticated yet subtle rules. They are tricky and we hide them under
the surface. The most important way to keep modules deep is by practicing information
hiding.

Information Hiding

That is, make your variables private, don't let anyone see what's inside the module as much
as you can. Embed all the cleverness inside the modules. So that will keep your interfaces
simple. And also it would keep it easy to modify your system. If | made a mistake, | can go
fix that without thinking about it in another context. The opposite of hiding information is
leaking information.

Leaking Information

This occurs when design decisions are reflected across multiple modules.

Any change to one module requires a change to all modules

Information leakage is one of the most important red flags in software design

One of the best skills you can learn as a software designed is a high level of sensitivity
to information leakage

Temporal Decomposotion

One of the biggest causes of information leaking is "temporal decomposition," especially in
BYOW. The structure of your system very much reflects the order in which events occur.

For example, student often do the following in BYOW:

Game is started with an input string, so call interactWithinputString()

Parse the String and find the seed by extracting N#####S (example code that
contains the seed.)’

Generate the world
Process each character using move(World, char)
etc.
Game is started with no input String, so call interactWithKeyboard
Display a menu and collect the seed (number we are using to generate the world).
Generate the world
Until done, call moveWithKeyboard(World)

etc.

1 Because the temporal discussion of when you worked on the project and the temporal
decomposition of when these things happen, you don't really recognize that they should be
sharing code that collects and extracts the seed for example.

Summary

Buld classes that provide functionality needed in many places in your code.
Create deep modules, classes with simple interfaces that do complicated things

avoid over-reliance on temporal decomposition where your decomposition is driven
primarily by the order in which things occur.

It's OK to use some temporal decomposition, but try to fix any information leakage
that occurs!

Be strategic, not tactical.

Most importantly: Hide information from yourself when unneeded!

Previous
31.2 Sources of Complexity

Next
31.4 Teamwork

