= (C CS61B Textbook Q

32.4 Summary

Quicksort

What can we do to avoid the worst case runtime of 0(N2) for Quicksort?

Randomness: pick a random pivot point, shuffle items before sorting

Smarter Pivot Selection: constant time pivot pick (ex: pick a few and then choose the
best out of them), linear time pivot pick like (ex: median)

. Introspection: switch to a different sort if current sort hits recursion depth threshold
Quicksort vs. Mergesort

Mergesort is faster than Quicksort L3S (leftmost pivot, 3-scan partition) and QuickSort
PickTH (median pivot, Tony Hoare partition)

Quicksort LTHS (leftmost pivot, Tony Hoare partition) is faster than Mergesort!
Tony Hoare's partitioning:
two pointers, one at each end of the items array, walking towards each other
left pointer hates larger or equal items, right pointer hates smaller or equal items
swapping anything they don't like; stop when the two pointers cross each other

new pivot = Item at right pointer.

Quick Select

Quick select helps us quickly find the median with partitioning. Median of an length n array
will be around index n /2.

Initialize array with the leftmost item as the pivot.
Partition around pivot.

Partition the subproblem. Repeat the process.



Stop when the pivot is at the median index.

Expected runtime: (V). Worst case runtime (when array is in sorted order): §(IN?).

Stability, Adaptiveness, and Optimization

Stability: A sort is stable if the order of equivalent elements is preserved.
Optimizations:

Adaptiveness - sort that exploits the existing order of the array.
Switch to Insertion Sort - when a subproblem reaches size 15 or lower
Exploit restrictions on set of keys

Switch from QuickSort - if the recursion goes too deep

Previous
32.3 Stability, Adaptiveness, and Optimization

Next
32.5 Exercises



