= (C CS61B Textbook Q

34.4 Summary

N
2

Math Problem Out of Nowhere 1. We showed that N! € Q(%

).

Math Problem Out of Nowhere 2. We showed that log(N!) € Q(N log N), and that
Nlog N € Q(log(N!)). Therefore log(IN!) € ©(NN log N).

Seeking a Sorting Lower Bound. We've found a number of sorts that complete execution in
O(N log N) time. This raises the obvious question: Could we do better? Let TUCS (which
stands for “The Ultimate Comparison Sort”) be the best possible algorithm that compares
items and puts them in order. We know that TUCS's worst case runtime is O (NN log N)
because we already know several algorithm whose worst case runtime is ©(/V log V), and
TUCS's worst case runtime is £2(IV') because we have to at least look at every item.
Without further discussion, this analysis so far suggest that might be able to do better than
©(N log N) worst case time.

Establishing a Sorting Lower Bound. As a fanciful exercise, we played a game called
puppy-cat-dog, in which we have to identify which of three boxes contains a puppy, cat, or
dog. Since there are 3! = 6 permutations, we need at least ceil(1g(6)) = 3 questions to
resolve the answer. In other words, if playing a game of 20 questions with 6 possible
answers, we have to ask at least 3 questions to be sure we have the right answer. Since
sorting through comparisons is one way to solve puppy-cat-dog, then any lower bound on
the number of comparisons for puppy-cat-dog also applies to sorting. Given IV items, there
are IN! permutations, meaning we need lg(N!) questions to win the game of puppy-cat-
dog, and by extension, we need at least lg(N!) to sort IV items with yes/no questions.
Since log(NN'!) = ©(N log V), we can say that the hypothetical best sorting algorithm
that uses yes/no questions requires Q(N log N) yes/no questions. Thus, there is no
comparison based algorithm that has a worst case that is a better order of growth than
©(N log N) compares.

Previous
34.3 Theoretical Bounds on Sorting

Next



34.5 Exercises

Last updated 1 year ago



