
Radix Sorts
Lecture 35 (Sorting 5)

1

CS61B, Spring 2024 @ UC Berkeley
Slides credit: Josh Hug

Lecture 35, CS61B, Spring 2024

Sorting Stability
Warmup: Digit-by-digit Sorting
Counting Sort

• Procedure
• Runtime

Radix Sorts
• LSD Radix Sort
• MSD Radix SortSorting Stability

Sorting Summary (so far)

Listed by mechanism:
● Selection sort: Find the smallest item and put it at the front.
● Insertion sort: Figure out where to insert the current item.
● Merge sort: Merge two sorted halves into one sorted whole.
● Partition (quick) sort: Partition items around a pivot.

Listed by memory and runtime:

Memory # Compares Notes

Heapsort Θ(1) Θ(N log N) worst Bad caching (61C)

Insertion Θ(1) Θ(N2) worst Θ(N) if almost sorted

Mergesort Θ(N) Θ(N log N) worst

Random Quicksort Θ(log N) (call stack) Θ(N log N) expected Fastest sort

Other Desirable Sorting Properties: Stability

A sort is said to be stable if order of equivalent items is preserved.

Bas 3

Fikriyya 4

Jana 3

Jouni 3

Lara 1

Nikolaj 4

Rosella 3

Sigurd 2

sort(studentRecords, BY_NAME);

Lara 1

Sigurd 2

Bas 3

Jana 3

Jouni 3

Rosella 3

Fikriyya 4

Nikolaj 4

sort(studentRecords, BY_SECTION);

Equivalent items don’t ‘cross over’ when being stably sorted.

Other Desirable Sorting Properties: Stability

A sort is said to be stable if order of equivalent items is preserved.

Bas 3

Fikriyya 4

Jana 3

Jouni 3

Lara 1

Nikolaj 4

Rosella 3

Sigurd 2

sort(studentRecords, BY_NAME);

Lara 1

Sigurd 2

Jouni 3

Rosella 3

Bas 3

Jana 3

Fikriyya 4

Nikolaj 4

sort(studentRecords, BY_SECTION);

Sorting instability can be really annoying! Wanted students listed alphabetically by section.

Sorting Stability www.yellkey.com/TODO

Is insertion sort stable?

Is Quicksort stable?
● Consider -------->

S O R T E X A M P L E
S O R T E X A M P L E (0 swaps)
O S R T E X A M P L E (1 swap)
O R S T E X A M P L E (1 swap)
O R S T E X A M P L E (0 swaps)
E O R S T X A M P L E (4 swaps)
E O R S T X A M P L E (0 swaps)
A E O R S T X M P L E (6 swaps)
A E M O R S T X P L E (5 swaps)
A E M O P R S T X L E (4 swaps)
A E L M O P R S T X E (7 swaps)
A E E L M O P R S T X (8 swaps)

6 8 3 1 2 7 4

Sorting Stability

Is insertion sort stable?
● Yes.
● Equivalent items never move past

their equivalent brethren.

Is Quicksort stable?
● Depends on your partitioning

strategy.

S O R T E X A M P L E
S O R T E X A M P L E (0 swaps)
O S R T E X A M P L E (1 swap)
O R S T E X A M P L E (1 swap)
O R S T E X A M P L E (0 swaps)
E O R S T X A M P L E (4 swaps)
E O R S T X A M P L E (0 swaps)
A E O R S T X M P L E (6 swaps)
A E M O R S T X P L E (5 swaps)
A E M O P R S T X L E (4 swaps)
A E L M O P R S T X E (7 swaps)
A E E L M O P R S T X (8 swaps)

6 7 3 1 2 8 3

2 3 3 1 6 8 73 1 2 3 6 7 8

Hoare partitioning.Three array partitioning.

Stability

Memory # Compares Notes Stable?

Heapsort Θ(1) Θ(N log N) Bad caching (61C) No

Insertion Θ(1) Θ(N2) Θ(N) if almost sorted Yes

Mergesort Θ(N) Θ(N log N) Yes

Quicksort LTHS Θ(log N) Θ(N log N) expected Fastest sort No

You can create a stable Quicksort (i.e. the version
from the previous lecture). However, unstable
partitioning schemes (like Hoare partitioning) tend to
be faster. All reasonable partitioning schemes yield
Θ(N log N) expected runtime, but with different
constants.

This is due to the cost of
tracking recursive calls by the
computer, and is also an
“expected” amount. The
difference between log N and
constant memory is trivial.

Arrays.sort

In Java, Arrays.sort(someArray) uses:
● Mergesort (specifically the TimSort variant) if someArray consists of Objects.
● Quicksort if someArray consists of primitives.

Why? See A level problems.

Arrays.sort

In Java, Arrays.sort(someArray) uses:
● Mergesort (specifically the TimSort variant) if someArray consists of Objects.
● Quicksort if someArray consists of primitives.

Why?
● Quicksort isn’t stable, but there’s only one way to order them. Wouldn’t have

multiple types of orders.
○ Could sort by other things, say sum of the digits.
○ Order by number of digits.

■ My usual answer: 5 is just 5. There’s no different possible 5s.

Arrays.sort

In Java, Arrays.sort(someArray) uses:
● Mergesort (specifically the TimSort variant) if someArray consists of Objects.
● Quicksort if someArray consists of primitives.

Why?
● When you are using a primitive value, they are the ‘same’. A 4 is a 4. Unstable

sort has no observable effect.
○ There’s really only one natural order for numbers, so why not just assume

that’s the case and sort them that way.
● By contrast, objects can have many properties, e.g. section and name, so

equivalent items CAN be differentiated.
○ If you know there’s only one way, can you force Java to use Quicksort?

Optimizing Sorts

Additional tricks we can play:
● Switch to insertion sort:

○ When a subproblem reaches size 15 or lower, use insertion sort.
● Make sort adaptive: Exploit existing order in array (Insertion Sort, SmoothSort,

TimSort (the sort in Python and Java)).
● Exploit restrictions on set of keys. If number of keys is some constant, e.g. [3,

4, 1, 2, 4, 3, …, 2, 2, 2, 1, 4, 3, 2, 3], can sort faster (see 3-way quicksort -- if
you’re curious, see: http://goo.gl/3sYnv3).

● For Quicksort: Make the algorithm introspective, switching to a different
sorting method if recursion goes too deep. Only a problem for deterministic
flavors of Quicksort.

http://goo.gl/3sYnv3

Today’s Two New Ideas

Today we’ll cover two new ideas:
● Digit-by-Digit Sorting

○ A procedure that uses a sort (e.g. Merge Sort, Quicksort, Counting Sort).
○ Using the word “sort” is arguably a misnomer.

■ Digit-by-digit sorting is a process that uses another sort as a
subroutine.

● Counting Sort
○ A new type of sort that competes with Merge Sort, Quicksort, Heap Sort,

Insertion Sort, Selection Sort, etc.
○ Unlike these other sorts, Counting Sort does not use compareTo.

Lecture 35, CS61B, Spring 2024

Sorting Stability
Warmup: Digit-by-digit Sorting
Counting Sort

• Procedure
• Runtime

Radix Sorts
• LSD Radix Sort
• MSD Radix Sort

Warmup:
Digit-by-digit
Sorting

As a warmup to the later part of today’s lecture. Suppose we have a list of integers
we want to sort.
● Suppose we first sort by only the rightmost digit.

Digit-by-digit Sorting

22
34
41
53
23
41
32
34
12
31
12
42

41
41
31
32
22
12
12
42
…

As a warmup to the later part of today’s lecture. Suppose we have a list of integers
we want to sort.
● Suppose we first sort by only the rightmost digit.

Digit-by-digit Sorting

What are the 4 integers at
the end of the array?

22
34
41
53
23
41
32
34
12
31
12
42

41
41
31
32
22
12
12
42
…

As a warmup to the later part of today’s lecture. Suppose we have a list of integers
we want to sort.
● Suppose we first sort by only the rightmost digit.

Digit-by-digit Sorting

41
41
31
32
22
12
12
42
53
23
34
34

22
34
41
53
23
41
32
34
12
31
12
42

As a warmup to the later part of today’s lecture. Suppose we have a list of integers
we want to sort.
● Suppose we first sort by only the rightmost digit.

Digit-by-digit Sorting

41
41
31
32
22
12
12
42
53
23
34
34

22
34
41
53
23
41
32
34
12
31
12
42

I put 53 and 23 in this order. Would
they always be in this order?

As a warmup to the later part of today’s lecture. Suppose we have a list of integers
we want to sort.
● Suppose we first sort by only the rightmost digit.

Digit-by-digit Sorting

41
41
31
32
22
12
12
42
53
23
34
34

22
34
41
53
23
41
32
34
12
31
12
42

I put 53 and 23 in this order. Would
they always be in this order?
● Not necessarily! Depends on

if the sort I used is stable.
● Stable sort yields 53 then 23.
● Example: If I used Quicksort

with shuffle, could have been
23 then 53.

As a warmup to the later part of today’s lecture. Suppose we have a list of integers
we want to sort.
● Now suppose we sort by the left digit using a stable sort.

Digit-by-digit Sorting

41
41
31
32
22
12
12
42
53
23
34
34

22
34
41
53
23
41
32
34
12
31
12
42

12
12
13
22
23
??
??
??
??
41
41
42

In what order will 31,
32, 34, and 34 appear?

As a warmup to the later part of today’s lecture. Suppose we have a list of integers
we want to sort.
● Now suppose we sort by the left digit using a stable sort.

Digit-by-digit Sorting

41
41
31
32
22
12
12
42
53
23
34
34

22
34
41
53
23
41
32
34
12
31
12
42

12
12
13
22
23
31
32
34
34
41
41
42

This procedure does not work if the sort subroutine is unstable.

Digit-by-digit Sorting

41
41
31
32
22
12
12
42
53
23
34
34

22
34
41
53
23
41
32
34
12
31
12
42

12
12
13
22
23
34
32
31
34
41
41
42

Example of a digit-by-digit sort:
● Use a stable sort on each digit, moving from least to most significant.
● Result is guaranteed to correct!

Digit-by-digit Sorting

322
434
141
353
223
341
432
234
112
331
412
342

141
341
331
322
432
112
412
342
353
223
434
234

112
412
322
223
331
432
434
234
141
341
342
353

112
141
223
234
322
331
341
342
353
412
432
434

Last digit is 3

Mid digit is 3

Top digit is 3

Two quick notes:
● No obvious reason why this procedure is useful (can just sort by entire integer)
● Other digit-by-digit sort procedures work.

Digit-by-digit Sorting

322
434
141
353
223
341
432
234
112
331
412
342

141
341
331
322
432
112
412
342
353
223
434
234

112
412
322
223
331
432
434
234
141
341
342
353

112
141
223
234
322
331
341
342
353
412
432
434

Last digit is 3

Mid digit is 3

Top digit is 3

We’ll come back
to digit-by-digit
sorting later!

Lecture 35, CS61B, Spring 2024

Sorting Stability
Warmup: Digit-by-digit Sorting
Counting Sort

• The Counting Sort Algorithm
• Runtime

Radix Sorts:
• LSD Radix Sort
• MSD Radix Sort

The Counting Sort
Algorithm

Comparison Based Sorting

The key idea from our previous sorting lecture: Sorting requires Ω(N log N)
compares in the worst case.
● Thus, the ultimate comparison based sorting algorithm has a worst case

runtime of Θ(N log N).

From an asymptotic perspective, that means no matter how clever we are, we can
never beat Merge Sort’s worst case runtime of Θ(N log N).
● ...but what if we don’t compare at all?

Example #1: Sleep Sort (for Sorting Integers) (not actually good)

For each integer x in array A, start a new program that:
● Sleeps for x seconds.
● Prints x.

All start at the same time.

Runtime:
● N + max(A)

Invented by 4chan (?).

The catch: On real machines, scheduling
execution of programs must be done by
an operating system. In practice requires
list of running programs sorted by sleep
time.

Example #2: Counting Sort: Exploiting Space Instead of Time

Assuming keys are unique
integers 0 to 11.

Idea:
● Create a new array.
● Copy item with key i into ith

entry of new array.

#

5 Sandra Vanilla Grimes

0 Lauren Mint Jon Talabot

11 Lisa Vanilla Blue Peter

9 Dave Chocolate Superpope

4 JS Fish The Filthy Reds

7 James Rocky Road Robots are Supreme

3 Edith Vanilla My Bloody Valentine

6 Swimp Chocolate Sef

1 Delbert Strawberry Ronald Jenkees

2 Glaser Cardamom Rx Nightly

8 Lee Vanilla La(r)va

10 Bearman Butter Pecan Extrobophile

Example #2: Counting Sort: Exploiting Space Instead of Time

#

5 Sandra Vanilla Grimes

0 Lauren Mint Jon Talabot

11 Lisa Vanilla Blue Peter

9 Dave Chocolate Superpope

4 JS Fish The Filthy Reds

7 James Rocky Road Robots are Supreme

3 Edith Vanilla My Bloody Valentine

6 Swimp Chocolate Sef

1 Delbert Strawberry Ronald Jenkees

2 Glaser Cardamom Rx Nightly

8 Lee Vanilla La(r)va

10 Bearman Butter Pecan Extrobophile

#

5 Sandra Vanilla Grimes

Example #2: Counting Sort: Exploiting Space Instead of Time

#

5 Sandra Vanilla Grimes

0 Lauren Mint Jon Talabot

11 Lisa Vanilla Blue Peter

9 Dave Chocolate Superpope

4 JS Fish The Filthy Reds

7 James Rocky Road Robots are Supreme

3 Edith Vanilla My Bloody Valentine

6 Swimp Chocolate Sef

1 Delbert Strawberry Ronald Jenkees

2 Glaser Cardamom Rx Nightly

8 Lee Vanilla La(r)va

10 Bearman Butter Pecan Extrobophile

#

0 Lauren Mint Jon Talabot

5 Sandra Vanilla Grimes

Example #2: Counting Sort: Exploiting Space Instead of Time

#

5 Sandra Vanilla Grimes

0 Lauren Mint Jon Talabot

11 Lisa Vanilla Blue Peter

9 Dave Chocolate Superpope

4 JS Fish The Filthy Reds

7 James Rocky Road Robots are Supreme

3 Edith Vanilla My Bloody Valentine

6 Swimp Chocolate Sef

1 Delbert Strawberry Ronald Jenkees

2 Glaser Cardamom Rx Nightly

8 Lee Vanilla La(r)va

10 Bearman Butter Pecan Extrobophile

#

0 Lauren Mint Jon Talabot

5 Sandra Vanilla Grimes

11 Lisa Vanilla Blue Peter

Example #2: Counting Sort: Exploiting Space Instead of Time

#

5 Sandra Vanilla Grimes

0 Lauren Mint Jon Talabot

11 Lisa Vanilla Blue Peter

9 Dave Chocolate Superpope

4 JS Fish The Filthy Reds

7 James Rocky Road Robots are Supreme

3 Edith Vanilla My Bloody Valentine

6 Swimp Chocolate Sef

1 Delbert Strawberry Ronald Jenkees

2 Glaser Cardamom Rx Nightly

8 Lee Vanilla La(r)va

10 Bearman Butter Pecan Extrobophile

#

0 Lauren Mint Jon Talabot

1 Delbert Strawberry Ronald Jenkees

2 Glaser Cardamom Rx Nightly

3 Edith Vanilla My Bloody Valentine

4 JS Fish The Filthy Reds

5 Sandra Vanilla Grimes

6 Swimp Chocolate Sef

7 James Rocky Road Robots are Supreme

8 Lee Vanilla La(r)va

9 Dave Chocolate Superpope

10 Bearman Butter Pecan Extrobophile

11 Lisa Vanilla Blue Peter

Generalizing Counting Sort

We just sorted N items in Θ(N) worst case time.
● Avoiding yes/no questions lets us dodge our lower bound based on puppy,

cat, dog!

Simplest case:
● Keys are unique integers from 0 to N-1.

More complex cases:
● Non-unique keys.
● Non-consecutive keys.
● Non-numerical keys.

Counting Sort: http://yellkey.com/TODO

Alphabet case: Keys belong to a finite ordered alphabet.
● Example: {♣, ♠, ♥, ♦} (in that order)

Question: What will be the index of the first ♥?

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

0
1
2
3
4
5
6
7
8
9

10
11

Sorted

Counting Sort

Alphabet case: Keys belong to a finite ordered alphabet.
● Example: {♣, ♠, ♥, ♦} (in that order)

Question: What will be the index of the first ♥?

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

♣
♣
♣
♠
♠

0
1
2
3
4
5
6
7
8
9

10
11

Sorted

Implementing Counting Sort with Counting Arrays

Counting sort:
● Count number of occurrences of each item.
● Iterate through list, using count array to decide where to put everything.

Bottom line, we can use counting sort to sort N objects in Θ(N) time.

Counting Sort

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

Example:
● Alphabet: {♣, ♠, ♥, ♦}

Example:
● Alphabet: {♣, ♠, ♥, ♦}

Counting Sort

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

♣ 3
♠ 2
♥ 4
♦ 3

0
1
2
3

Counts

Example:
● Alphabet: {♣, ♠, ♥, ♦}

Counting Sort

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

♣ 3
♠ 2
♥ 4
♦ 3

♣ 0
♠ 3
♥ 5
♦ 9

0
1
2
3

0
1
2
3

Counts Starting Points

Example:
● Alphabet: {♣, ♠, ♥, ♦}

Counting Sort

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

♣ 3
♠ 2
♥ 4
♦ 3

♣ 0
♠ 3
♥ 5
♦ 9

0
1
2
3

0
1
2
3

Counts Starting Points

0
1
2
3
4
5
6
7
8
9

10
11

Sorted

Example:
● Alphabet: {♣, ♠, ♥, ♦}

Counting Sort

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

♣ 3
♠ 2
♥ 4
♦ 3

♣ 0
♠ 4
♥ 5
♦ 9

0
1
2
3

0
1
2
3

Counts Starting Points
♠ Lauren

0
1
2
3
4
5
6
7
8
9

10
11

Sorted

Example:
● Alphabet: {♣, ♠, ♥, ♦}

Counting Sort

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

♣ 3
♠ 2
♥ 4
♦ 3

♣ 0
♠ 4
♥ 6
♦ 9

0
1
2
3

0
1
2
3

Counts Starting Points
♠ Lauren

♥ Delbert

0
1
2
3
4
5
6
7
8
9

10
11

Sorted

Example:
● Alphabet: {♣, ♠, ♥, ♦}

Counting Sort

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

♣ 3
♠ 2
♥ 4
♦ 3

♣ 0
♠ 4
♥ 6
♦ 10

0
1
2
3

0
1
2
3

Counts Starting Points
♠ Lauren

♥ Delbert

♦ Glaser

0
1
2
3
4
5
6
7
8
9

10
11

Sorted

Example:
● Alphabet: {♣, ♠, ♥, ♦}

Counting Sort

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

♣ 3
♠ 2
♥ 4
♦ 3

♣ 1
♠ 4
♥ 6
♦ 10

0
1
2
3

0
1
2
3

Counts Starting Points

♣ Edith

♠ Lauren

♥ Delbert

♦ Glaser

0
1
2
3
4
5
6
7
8
9

10
11

Sorted

Example:
● Alphabet: {♣, ♠, ♥, ♦}

Counting Sort

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

♣ 3
♠ 2
♥ 4
♦ 3

♣ 1
♠ 5
♥ 6
♦ 10

0
1
2
3

0
1
2
3

Counts Starting Points

♣ Edith

♠ Lauren
♠ JS
♥ Delbert

♦ Glaser

0
1
2
3
4
5
6
7
8
9

10
11

Sorted

Example:
● Alphabet: {♣, ♠, ♥, ♦}

Counting Sort

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

♣ 3
♠ 2
♥ 4
♦ 3

♣ 1
♠ 5
♥ 6
♦ 11

0
1
2
3

0
1
2
3

Counts Starting Points

♣ Edith

♠ Lauren
♠ JS
♥ Delbert

♦ Glaser
♦ Sandra

0
1
2
3
4
5
6
7
8
9

10
11

Sorted

Example:
● Alphabet: {♣, ♠, ♥, ♦}

Counting Sort

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

♣ 3
♠ 2
♥ 4
♦ 3

♣ 1
♠ 5
♥ 7
♦ 11

0
1
2
3

0
1
2
3

Counts Starting Points

♣ Edith

♠ Lauren
♠ JS
♥ Delbert
♥ Swimp

♦ Glaser
♦ Sandra

0
1
2
3
4
5
6
7
8
9

10
11

Sorted

Example:
● Alphabet: {♣, ♠, ♥, ♦}

Counting Sort

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

♣ 3
♠ 2
♥ 4
♦ 3

♣ 1
♠ 5
♥ 8
♦ 11

0
1
2
3

0
1
2
3

Counts Starting Points

♣ Edith

♠ Lauren
♠ JS
♥ Delbert
♥ Swimp
♥ James

♦ Glaser
♦ Sandra

0
1
2
3
4
5
6
7
8
9

10
11

Sorted

Example:
● Alphabet: {♣, ♠, ♥, ♦}

Counting Sort

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

♣ 3
♠ 2
♥ 4
♦ 3

♣ 2
♠ 5
♥ 8
♦ 11

0
1
2
3

0
1
2
3

Counts Starting Points

♣ Edith
♣ Lee

♠ Lauren
♠ JS
♥ Delbert
♥ Swimp
♥ James

♦ Glaser
♦ Sandra

0
1
2
3
4
5
6
7
8
9

10
11

Sorted

Example:
● Alphabet: {♣, ♠, ♥, ♦}

Counting Sort

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

♣ 3
♠ 2
♥ 4
♦ 3

♣ 2
♠ 5
♥ 9
♦ 11

0
1
2
3

0
1
2
3

Counts Starting Points

♣ Edith
♣ Lee

♠ Lauren
♠ JS
♥ Delbert
♥ Swimp
♥ James
♥ Dave
♦ Glaser
♦ Sandra

0
1
2
3
4
5
6
7
8
9

10
11

Sorted

Example:
● Alphabet: {♣, ♠, ♥, ♦}

Counting Sort

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

♣ 3
♠ 2
♥ 4
♦ 3

♣ 3
♠ 5
♥ 9
♦ 11

0
1
2
3

0
1
2
3

Counts Starting Points

♣ Edith
♣ Lee
♣ Bearman
♠ Lauren
♠ JS
♥ Delbert
♥ Swimp
♥ James
♥ Dave
♦ Glaser
♦ Sandra

0
1
2
3
4
5
6
7
8
9

10
11

Sorted

Example:
● Alphabet: {♣, ♠, ♥, ♦}

Counting Sort

♠ Lauren
♥ Delbert
♦ Glaser
♣ Edith
♠ JS
♦ Sandra
♥ Swimp
♥ James
♣ Lee
♥ Dave
♣ Bearman
♦ Lisa

♣ 3
♠ 2
♥ 4
♦ 3

♣ 3
♠ 5
♥ 9
♦ 12

0
1
2
3

0
1
2
3

Counts Starting Points

♣ Edith
♣ Lee
♣ Bearman
♠ Lauren
♠ JS
♥ Delbert
♥ Swimp
♥ James
♥ Dave
♦ Glaser
♦ Sandra
♦ Lisa

0
1
2
3
4
5
6
7
8
9

10
11

Sorted

Lecture 35, CS61B, Spring 2024

Sorting Stability
Warmup: Digit-by-digit Sorting
Counting Sort

• Procedure
• Runtime

Radix Sorts:
• LSD Radix Sort
• MSD Radix Sort

Counting Sort
Runtime

Counting Sort vs. Quicksort: http://yellkey.com/TODO

For sorting an array of the 100 largest cities by population, which sort do you think
has a better expected worst case runtime in seconds?
A. Counting Sort (as described in our demo)
B. Quicksort

First question to ask yourself: What is the alphabet for counting sort here?

Counting Sort vs. Quicksort

For sorting an array of the 100 largest cities by population, which sort do you think
has a better expected worst case runtime in seconds?
A. Counting Sort (as described in our demo)
B. Quicksort

Counting sort requires building an array of size 37,832,892 (population of Tokyo).

6352254 Ahmedabad
4778000 Alexandria
5346518 Ankara
6555956 Atlanta
8495928 Bandung

12517749 Bangalore
... ...

... ...
4777999 0
4778000 1
4778001 0
4778002 0

... ...
37832892 1

Counts

...

Counting Sort Runtime Analysis

What is the runtime for counting sort on N keys with alphabet of size R?
● Treat R as a variable, not a constant.

Counting Sort Runtime Analysis

Total runtime on N keys with alphabet of size R: Θ(N+R)
● Creating and filling our count-related arrays: Θ(R)

○ Example: R = 4 for four card suits.
● Counting each item and copying into new array: Θ(N)

Memory usage: Θ(N+R)

Bottom line: If N is ≥ R, then we expect reasonable performance.

Empirical experiments needed to
compare vs. Quicksort on
practical inputs.

For ordered array. For counts and starting points.

See hidden slide after this for a more verbose explanation.

Counting Sort Runtime Analysis (More Verbose)

Total runtime on N keys with alphabet of size R: Θ(N+R)
● Create an array of size R to store counts: Θ(R)
● Counting number of each item: Θ(N)
● Calculating target positions of each item: Θ(R)
● Creating an array of size N to store ordered data: Θ(N)
● Copying items from original array to ordered array: Do N times:

○ Check target position: Θ(1)
○ Update target position: Θ(1)

● Copying items from ordered array back to original array: Θ(N)

Memory usage: Θ(N+R)

Bottom line: If N is ≥ R, then we expect reasonable performance.

Empirical experiments needed to
compare vs. Quicksort on
practical inputs.

For ordered array. For counts and starting points.

Counting Sort vs. Quicksort

Give an example of a specific situation where Counting Sort will be clearly faster
than Quicksort.
A. Counting Sort: Θ(N+R)
B. Quicksort: Θ(N log N)

Previous example was sorting N = 100 cities by population (R = 37,832,892).

Sort Summary

Counting sort is nice, but alphabetic restriction limits usefulness.
● Idea: Let’s try digit-by-digit sorting.
● The set of possible digits will be a relatively small alphabet.

Memory Runtime Notes Stable?

Heapsort Θ(1) Θ(N log N) Bad caching (61C) No

Insertion Θ(1) Θ(N2) Small N, almost sorted Yes

Mergesort Θ(N) Θ(N log N) Fastest stable Yes

Random Quicksort Θ(log N) Θ(N log N) expected Fastest compare sort No

Counting Sort Θ(N+R) Θ(N+R) Alphabet keys only Yes

N: Number of keys. R: Size of alphabet.

Lecture 35, CS61B, Spring 2024

Sorting Stability
Warmup: Digit-by-digit Sorting
Counting Sort

• Procedure
• Runtime

Radix Sorts
• LSD Radix Sort
• MSD Radix SortLSD Radix Sort

Radix Sort

Counting sort is slow when the alphabet is large.
● By decomposing input into a string of characters from a finite alphabet, we

can force R to be small.

♠
♠

Lauren

♥
♦

Delbert

♦
♣

Glaser

♣
♥

Edith

♠
♥

JS

♦
♣

Sandra

♥
♠

Swimp

♥
♦

James

♣
♠

Lee

♥
♣

Dave

♣
♠

Bearman

♦
♠

Lisa

horse Lauren
 elf Delbert
cat Glaser

crab Edith
monkey JS

rhino Sandra
raccoon Swimp

cat James
fish Lee
 tree Dave
virus Bearman

human Lisa

4238 Lauren
34163 Delbert

123 Glaser
43415 Edith
9918 JS
767 Sandra

3 Swimp
634 James
724 Lee

2346 Dave
457 Bearman
312 Lisa

Digit-by-digit Counting Sort

As we’ve seen, we can sort each digit independently from rightmost digit towards
left.
● Example: Over {♣, ♠, ♥, ♦}

♠
♠

Lauren

♥
♦

Delbert

♦
♣

Glaser

♣
♥

Edith

♠
♥

JS

♦
♣

Sandra

♥
♠

Swimp

♥
♦

James

♣
♠

Lee

♥
♣

Dave

♣
♠

Bearman

♦
♠

Lisa

♦
♣

Glaser

♦
♣

Sandra

♥
♣

Dave

♠
♠

Lauren

♥
♠

Swimp

♣
♠

Lee

♣
♠

Bearman

♦
♠

Lisa

♣
♥

Edith

♠
♥

JS

♥
♦

Delbert

♥
♦

James

♣
♠

Lee

♣
♠

Bearman

♣
♥

Edith

♠
♠

Lauren

♠
♥

JS

♥
♣

Dave

♥
♠

Swimp

♥
♦

Delbert

♥
♦

James

♦
♣

Glaser

♦
♣

Sandra

♦
♠

Lisa

Digit-by-digit Counting Sort

Sort each digit independently from rightmost digit towards left.
● Example: Over {1, 2, 3, 4}

22 Lauren
34 Delbert
41 Glaser
13 Edith
23 JS
41 Sandra
32 Swimp
34 James
12 Lee
31 Dave
12 Bearman
42 Lisa

41 Glaser
41 Sandra
31 Dave
22 Lauren
32 Swimp
12 Lee
12 Bearman
42 Lisa
13 Edith
23 JS
34 Delbert
34 James

12 Lee
12 Bearman
13 Edith
22 Lauren
23 JS
31 Dave
32 Swimp
34 Delbert
34 James
41 Glaser
41 Sandra
42 Lisa

LSD Radix Sort

Non-comparison based sorting algorithms that proceed digit-by-digit are called
“Radix Sorts”.

Via wikipedia: “In a positional numeral system, the radix or base is the number of
unique digits, including the digit zero, used to represent numbers.”

The sort we’ve just discussed is called “LSD Radix Sort”.
● LSD: Least Significant Digit.

LSD Runtime

What is the runtime of LSD sort?
● Pick appropriate letters to represent non-constant terms.

22 Lauren
34 Delbert
41 Glaser
13 Edith
23 JS
41 Sandra
32 Swimp
34 James
12 Lee
31 Dave
12 Bearman
42 Lisa

41 Glaser
41 Sandra
31 Dave
22 Lauren
32 Swimp
12 Lee
12 Bearman
42 Lisa
13 Edith
23 JS
34 Delbert
34 James

12 Lee
12 Bearman
13 Edith
22 Lauren
23 JS
31 Dave
32 Swimp
34 Delbert
34 James
41 Glaser
41 Sandra
42 Lisa

LSD Runtime

What is the runtime of LSD sort?
● Θ(WN+WR)
● N: Number of items, R: size of alphabet, W: Width of each item in # digits

22 Lauren
34 Delbert
41 Glaser
13 Edith
23 JS
41 Sandra
32 Swimp
34 James
12 Lee
31 Dave
12 Bearman
42 Lisa

41 Glaser
41 Sandra
31 Dave
22 Lauren
32 Swimp
12 Lee
12 Bearman
42 Lisa
13 Edith
23 JS
34 Delbert
34 James

12 Lee
12 Bearman
13 Edith
22 Lauren
23 JS
31 Dave
32 Swimp
34 Delbert
34 James
41 Glaser
41 Sandra
42 Lisa

Non-equal Key Lengths

After processing least significant digit, we have array shown below. Now what?

43

9

817

412

51

33

71

51

71

412

43

33

817

9

Non-equal Key Lengths

When keys are of different lengths, can treat empty spaces as less than all other
characters.

·43

··9

817

412

·51

·33

·71

·51

·71

412

·43

·33

817

··9

··9

412

817

·33

·43

·51

·71

··9

·33

·43

·51

·71

412

817

Sorting Summary

W passes of counting sort: Θ(WN+WR) runtime.
● Annoying feature: Runtime depends on length of longest key.

Memory Runtime Notes Stable?

Heapsort Θ(1) Θ(N log N)* Bad caching (61C) No

Insertion Θ(1) Θ(N2)* Small N, almost sorted Yes

Mergesort Θ(N) Θ(N log N)* Fastest stable sort Yes

Random Quicksort Θ(log N) Θ(N log N)* expected Fastest compare sort No

Counting Sort Θ(N+R) Θ(N+R) Alphabet keys only Yes

LSD Sort Θ(N+R) Θ(WN+WR) Strings of alphabetical
keys only

Yes

N: Number of keys. R: Size of alphabet. W: Width of longest key.
*: Assumes constant compareTo time.

Lecture 35, CS61B, Spring 2024

Sorting Stability
Warmup: Digit-by-digit Sorting
Counting Sort

• Procedure
• Runtime

Radix Sorts
• LSD Radix Sort
• MSD Radix SortMSD Radix Sort

MSD (Most Significant Digit) Radix Sort

Basic idea: Just like LSD, but sort from leftmost digit towards the right.

Pseudopseudohypoparathyroidism

Floccinaucinihilipilification

Antidisestablishmentarianism

Honorificabilitudinitatibus

Pneumonoultramicroscopicsilicovolcanoconiosis

MSD Sort Question: http://yellkey.com/TODO

Suppose we sort by topmost digit, then middle digit, then rightmost digit. Will we
arrive at the correct result? A. Yes, B. No

a d d

c a b

f a d

f e e

b a d

b e e

f e d

b e d

a c e

a d d

a c e

b a d

b e e

b e d

c a b

f a d

f e e

f e d

MSD Sort Question

Suppose we sort by topmost digit, then middle digit, then rightmost digit. Will we
arrive at the correct result? A. Yes, B. No. How do we fix?

a d d

c a b

f a d

f e e

b a d

b e e

f e d

b e d

a c e

a d d

a c e

b a d

b e e

b e d

c a b

f a d

f e e

f e d

b a d

a d d

MSD Radix Sort (correct edition)

Key idea: Sort each subproblem separately.

a d d

c a b

f a d

f e e

b a d

b e e

f e d

b e d

a c e

f a d

f e e

f e d

a d d

a c e

b a d

b e e

b e d

c a b

a c e

b a d

f e e

f e d

a d d

b e e

b e d

f a d

b e d

b e e

f e d

f e e

Runtime of MSD

What is the Best Case of MSD sort (in terms of N, W, R)?

What is the Worst Case of MSD sort (in terms of N, W, R)?

Runtime of MSD

Best Case.
● We finish in one counting sort pass, looking only at the top digit: Θ(N + R)

Worst Case.
● We have to look at every character, degenerating to LSD sort: Θ(WN + WR)

Sorting Runtime Analysis

Memory Runtime (worst) Notes Stable?

Heapsort Θ(1) Θ(N log N)* Bad caching (61C) No

Insertion Θ(1) Θ(N2)* Fastest for small N,
almost sorted data

Yes

Mergesort Θ(N) Θ(N log N)* Fastest stable sort Yes

Random Quicksort Θ(log N) Θ(N log N)* expected Fastest compare sort No

Counting Sort Θ(N+R) Θ(N+R) Alphabet keys only Yes

LSD Sort Θ(N+R) Θ(WN+WR) Strings of alphabetical
keys only

Yes

MSD Sort Θ(N+WR) Θ(N+R) (best)
Θ(WN+WR) (worst)

Bad caching (61C) Yes

N: Number of keys. R: Size of alphabet. W: Width of longest key.
*: Assumes constant compareTo time.

Sounds of Sorting Algorithms

Starts with selection sort: https://www.youtube.com/watch?v=kPRA0W1kECg
Insertion sort: https://www.youtube.com/watch?v=kPRA0W1kECg&t=0m9s
Quicksort: https://www.youtube.com/watch?v=kPRA0W1kECg&t=0m38s
Mergesort: https://www.youtube.com/watch?v=kPRA0W1kECg&t=1m05s
Heapsort: https://www.youtube.com/watch?v=kPRA0W1kECg&t=1m28s
LSD sort: https://www.youtube.com/watch?v=kPRA0W1kECg&t=1m54s
MSD sort: https://www.youtube.com/watch?v=kPRA0W1kECg&t=2m10s
Shell’s sort: https://www.youtube.com/watch?v=kPRA0W1kECg&t=3m37s
Questions to ponder (later… after class):

● How many items are sorted in the video for selection sort?
● Why does insertion sort take longer / more compares than selection sort?
● At what time stamp does the first partition complete for Quicksort?
● Could the size of the input used by mergesort in the video be a power of 2?
● What do the colors mean for heapsort?
● How many characters are in the alphabet used for the LSD sort problem?
● How many digits are in the keys used for the LSD sort problem?

https://www.youtube.com/watch?v=kPRA0W1kECg
https://www.youtube.com/watch?v=kPRA0W1kECg&t=0m9s
https://www.youtube.com/watch?v=kPRA0W1kECg&t=0m38s
https://www.youtube.com/watch?v=kPRA0W1kECg&t=1m05s
https://www.youtube.com/watch?v=kPRA0W1kECg&t=1m28s
https://www.youtube.com/watch?v=kPRA0W1kECg&t=1m54s
https://www.youtube.com/watch?v=kPRA0W1kECg&t=2m10s
https://www.youtube.com/watch?v=kPRA0W1kECg&t=3m37s

