= (C CS61B Textbook Q

36.4 Summary

Radix Sort vs. Comparison Sorts. In lecture, we used the number of characters examined
as a cost model to compare radix sort and comparison sort. For MSD Radix Sort, the worst
case is that each character is examined once for NM characters examined. For merge sort,
MNIogN is the worst case characters examined. Thus, we can see that merge sort is slower
by a factor of logN if character comparisons are an appropriate cost model. Using an
empirical analysis, however, we saw that this does not hold true because of lots of
background reasons such as the cache, optimized methods, extra copy operations, and
overall because our cost model does not account for everything happening.

Just-In-Time Compiler. The “interpreter” studies your code as it runs so that when a
sequence of code is run many times, it studies and re-implements based on what it learns
while running to optimize it. For example, if a LinkedList is created many times in a loop and
left unused, it eventually learns to stop creating the LinkedLists since they are never used.
With the Just-In-Time compiler disabled, merge sort, from the previous section, is indeed
slower than MSD Radix Sort.

Radix Sorting Integers. When radix sorting integers, we no longer have a charAt method.
There are lots of alternative options are stilizing mods and division to write your own
getDigit() method or to make each Integer into a String. However, we don’t actually have to
stick to base 10 and can instead treat the numbers as base 16, 256, or even base 65536
numbers. Thus, we can reduce the number of digits, which can reduces the runtime since
runtime for radix sort depends on alphabet size.

Previous
36.3 Radix Sorting Integers

Next
36.5 Exercises






