= (C CS61B Textbook Q

38.2 Prefix-free Codes

Consider the representation of English text in Java. We represent text as a sequence of
characters, each taking 8 bits of memory.

One easy way to compress, then, is to simply use less than 8 bits per character. To do this,
we have to decide which codewords (bit sequences) go with each symbol (character).

Mapping Alphanumeric Symbols

Morse Code

As an introductory example, consider the Morse code alphabet. Looking at the alphabet
below, what does the sequence —— « —— e represent? It's ambiguous! The same sequence
of symbols can represent either MEME, or GG, depending on what you choose —— ¢ t0
represent

X0V ZZ) AR——=Td Mmoo >
[I I
-

Ambiguity in morse code

N<XXS<C
Illnot
I
[]

OoOoOdOUBEWNE

o

| I |

In real usage, operators must pause between codewords to indicate a break. The pause

acts as an implicit third symbol, but we can't encode this real-time information into our

code.

Prefix-free Codes

An alternate strategy to avoid the need for real-time is to use prefix-free codes. In a prefix-

free code, no codeword is a prefix of any other. In the Morse Code example, there would be

no confusion whether the ——in the pattern —— ¢ —— ¢ is supposed to represent M, or the

start of G.

Let's represent Morse code as a tree of codewords leading to symbols. As we can see from

the tree, several symbols have representations that are prefixes of other symbols.

@@ ® @ @ @@@ 0 @@

Morse code is not prefix-free.

As an example of an (arbitrary) prefix-free code, consider the following encoding:

-« 1 5
space |1 2 L
space
E 01 M
T 001 3 E
‘..-f"""‘“\..l
A 0001 T
0 00001 9"/\"‘11
| 000001 0 <_1
0]
__@..-—-"""“‘--.,1_
| ATE: 0000011000100101 L '

One prefix-free code.

The following code is also prefix-free:

- 5 _— space | 111

0 1
E 010
=4 JJL#,,aﬁﬁl‘h T 1101
. A 1011
E space | 1000
TANIEZNERYAN
I 0 s A e T

| ATE: 100011110111101010

Another prefix-free code.

Note that some codes are more efficient for certain strings than others: in the first
representation, I ATE uses less bits than the second code. However, this is highly
dependent on what string we're trying to encode.

Previous
38.1 Introduction to Compression

Next
38.3 Shannon-Fano Codes

Last updated 1 year ago

