= (C CS61B Textbook Q

38.7 Summary

Compression Model #1: Algorithms Operating on Bits. Given a sequence of bits B, we put
them through a compression algorithm C to form a new bitstream C(B). We can run C(B)
through a corresponding decompression algorithm to recover B. Ideally, C(B) is less than B.

Variable Length Codewords. Basic idea: Use variable length codewords to represent
symbols, with shorter keywords going with more common symbols. For example, instead of
representing every English character by a 8 bit ASCII value, we can represent more
common values with shorter sequences. Morse code is an example of a system of variable
length codewords.

Prefix Free Codes. If some codewords are prefixes of others, then we have ambiguity, as
seen in Morse Code. A prefix free code is a code where no codeword is a prefix of any
other. Prefix free codes can be uniquely decoded.

Shannon-Fano Coding. Shannon-Fano coding is an intuitive procedure for generating a
prefix free code. First, one counts the occurrence of all symbols. Then you recursively split
characters into halves over and over based on frequencies, with each half either having a 1
or a 0 appended to the end of the codeword.

Huffman Coding. Huffman coding generates a provably optimal prefix free code, unlike
Shannon-Fano, which can be suboptimal. First, one counts the occurrence of all symbols,
and create a “node” for each symbol. We then merge the two lowest occurrence nodes into
a tree with a new supernode as root, with each half either having a 1 or a 0 appended to
the beginning of the codeword. We repeat this until all symbols are part of the tree.
Resulting code is optimal.

Huffman Implementation. To compress a sequence of symbols, we count frequencies,
build an encoding array and a decoding trie, write the trie to the output, and then look up
each symbol in the encoding array and write out the appropriate bit sequence to the
output. To decompress, we read in the trie, then repeatedly use longest prefix matching to
recover the original symbol.



General Principles Behind Compression. Huffman coding is all about representing
common symbols with a small number of bits. There are other ideas, like run length
encoding where you replace every character by itself followed by its number of
occurrences, and LZW which searches for common repeated patterns in the input. More
generally, the goal is to exploit redundancy and existing order in the input.

Universal Compression is Impossible. It is impossible to create an algorithm that can
compress any bitstream by 50%. Otherwise, you could just compress repeatedly until you
ended up with just 1 bit, which is clearly absurd. A second argument is that for an input
bitstream of say, size 1000, only 1in 27499 is capable of being compressed by 50%, due to
the pigeonhole principle.

Compression Model #2: Self Extracting Bits. Treating the algorithm and the input
bitstream separately (like we did in model #1) is a more accurate model, but it seems to
leave open strange algorithms like one in which we simply hardcode our desired output into
the algorithm itself. For example, we might have a .java decompression algorithm that has a
giant byte[] array of your favorite TV show, and if the algorithm gets the input 010 , it
outputs this byte[] array.

In other words, it seems to make more sense to include not just the compressed bits when
considering the size of our output, but also the algorithm used to do the decompression.

One conceptual trick to make this more concrete is to imagine that our algorithm and the
bits themselves are a single entity, which we can think of a self-extracting bit sequence.
When fed to an interpreter, this self-extracting bit sequence generates a particular output
sequence.

Hugplant Example. If we have an image file of something like the hugplant.omp from
lecture, we can break it into 8 bit chunks and then Huffman encode it. If we give this file to
someone else, they probably won't know how to decompress it, since Huffman coding is
not a standard compression algorithm supported by major operating systems. Thus, we
also need to provide the Huffman decoding algorithm. We could send this as a separate
Jjava file, but for conceptual convenience and in line with compression model #2, we'll
imagine that we have packaged our compressed bit stream into a byte[] array in a .java
file. When passed to an interpreter, this bitstream yields the original hugplant.omp, which is
4 times larger than the compressed bitstream + huffman interpreter.

Previous



38.6 LZW Compression

Next
38.8 Exercises

Last updated 1 year ago



