= (C CS61B Textbook Q

3. References, Recursion, and Lists

Lists

In Project O, we use arrays to track the positions of N objects in space. One thing we would
not have been able to easily do is change the number of objects after the simulation had
begun. This is because arrays have a fixed size in Java that can never change.

An alternate approach would have been to use a list type. You've no doubt used a list data
structure at some point in the past. For example, in Python:

L = [3, 5, 6]
L.append(7)

While Java does have a built-in List type, we're going to eschew using it for now. In this
chapter, we'll build our own list from scratch, along the way learning some key features of
Java.

The Mystery of the Walrus
To begin our journey, we will first ponder the profound Mystery of the Walrus.

Try to predict what happens when we run the code below. Does the change to b affect a?
Hint: If you're coming from Python, Java has the same behavior.

Walrus a = new Walrus(1000, 8.3);
Walrus b;

b = a;

b.weight BF
System.out.println(a);
System.out.println(b);

Now try to predict what happens when we run the code below. Does the change to x affect
y?

int x = 5;

int y;

y = X;

X = 2;

System.out.println("x is: " + x);
System.out.println("y is: " + y);

The answer can be found here.

While subtle, the key ideas that underlie the Mystery of the Walrus will be incredibly
important to the efficiency of the data structures that we'll implement in this course, and a
deep understanding of this problem will also lead to safer, more reliable code.

Bits

All information in your computer is stored in memory as a sequence of ones and zeros.
Some examples:

72 is often stored as 01001000

205.75 is often stored as 01000011 01001101 11000000 00000000
The letter H is often stored as 01001000 (same as 72)

The true value is often stored as 00000001

In this course, we won't spend much time talking about specific binary representations, e.g.
why on earth 205.75 is stored as the seemingly random string of 32 bits above.
Understanding specific representations is a topic of CS61C, the followup course to 61B.

Though we won't learn the language of binary, it's good to know that this is what is going
on under the hood.

One interesting observation is that both 72 and H are stored as 01001000. This raises the
question: how does a piece of Java code know how to interpret 010010007?

The answer is through types! For example, consider the code below:

char ¢ = 'H';

int x = c;
System.out.println(c);
System.out.println(x);

If we run this code, we get:

H
72

In this case, both the x and c variables contain the same bits (well, almost...), but the Java
interpreter treats them differently when printed.

In Java, there are 8 primitive types: byte, short, int, long, float, double, boolean, and char.
Each has different properties that we'll discuss throughout the course, with the exception
of short and float, which you'll likely never use.

Declaring a Variable (Simplified)

You can think of your computer as containing a vast number of memory bits for storing
information, each of which has a unique address. Many billions of such bits are available to
the modern computer.

When you declare a variable of a certain type, Java finds a contiguous block with exactly
enough bits to hold a thing of that type. For example, if you declare an int, you get a block
of 32 bits. If you declare a byte, you get a block of 8 bits. Each data type in Java holds a
different number of bits. The exact number is not terribly important to us in this class.

For the sake of having a convenient metaphor, we'll call one of these blocks a "box" of bits.

In addition to setting aside memory, the Java interpreter also creates an entry in an internal
table that maps each variable name to the location of the first bit in the box.

For example, if you declared int x and double y , then Java might decide to use bits 352
through 384 of your computer's memory to store x, and bits 20800 through 20864 to store
y. The interpreter will then record that int x starts at bit 352 and y starts at bit 20800. For
example, after executing the code:

int x;
double vy;

We'd end up with boxes of size 32 and 64 respectively, as shown in the figure below:

x_and_y_empty_bitwise

The Java language provides no way for you to know the location of the box, e.g. you can't
somehow find out that x is in position 352. In other words, the exact memory address is
below the level of abstraction accessible to us in Java. This is unlike languages like C where
you can ask the language for the exact address of a piece of data. For this reason, | have
omitted the addresses from the figure above.

This feature of Java is a tradeoff! Hiding memory locations from the programmer gives you
less control, which prevents you from doing certain types of optimizations. However, it also
avoids a large class of very tricky programming errors. In the modern era of very low cost
computing, this tradeoff is usually well worth it. As the wise Donald Knuth once said: "We
should forget about small efficiencies, say about 97% of the time: premature optimization is
the root of all evil".

As an analogy, you do not have direct control over your heartbeat. While this restricts your
ability to optimize for certain situations, it also avoids the possibility of making stupid errors
like accidentally turning it off.

Java does not write anything into the reserved box when a variable is declared. In other
words, there are no default values. As a result, the Java compiler prevents you from using a
variable until after the box has been filled with bits using the = operator. For this reason, |
have avoided showing any bits in the boxes in the figure above.

When you assign values to a memory box, it is filled with the bits you specify. For example,
if we execute the lines:

X = -1431195969;
567213.112;

Then the memory boxes from above are filled as shown below, in what | call box notation.

x 10101010101100011010111010111111

y ©0100000100100001010011110101101000111001010110000001000001100010

x_and_y_empty_filled.png

The top bits represent -1431195969, and the bottom bits represent 567213.112. Why these
specific sequences of bits represent these two numbers is not important, and is a topic
covered in CS61C. However, if you're curious, see integer representations and double
representations on wikipedia.

Note: Memory allocation is actually somewhat more complicated than described here, and
is a topic of CS 61C. However, this model is close enough to reality for our purposes in 61B.

Simplified Box Notation

While the box notation we used in the previous section is great for understanding
approximately what's going on under the hood, it's not useful for practical purposes since
we don't know how to interpret the binary bits.

Thus, instead of writing memory box contents in binary, we'll write them in human readable
symbols. We will do this throughout the rest of the course. For example, after executing:

int x;

double vy;

X = -1431195969;
y = 567213.112;

We can represent the program environment using what | call simplified box notation,
shown below:

X -1431195969

y 567213.112

x_and_y_simplified_box_notation.png

The Golden Rule of Equals (GRoE)

Now armed with simplified box notation, we can finally start to resolve the Mystery of the
Walrus.

It turns out our Mystery has a simple solution: When you write y = x , you are telling the
Java interpreter to copy the bits from x into y. This Golden Rule of Equals (GRoE) is the root
of all truth when it comes to understanding our Walrus Mystery.

int x = 5;

int y;

y = X;

X = 2;
System.out.println("x is:
System.out.println("y is:

+ X);
+Yy);

This simple idea of copying the bits is true for ANY assignment using = in Java. To see
this in action, click this link.

Reference Types

Above, we said that there are 8 primitive types: byte, short, int, long, float, double, boolean,
char. Everything else, including arrays, is not a primitive type but rather a reference type .

Object Instantiation

When we instantiate an Object using new (e.g. Dog, Walrus, Planet), Java first allocates a
box for each instance variable of the class, and fills them with a default value. The
constructor then usually (but not always) fills every box with some other value.

For example, if our Walrus class is:

public static class Walrus {
public int weight;
public double tuskSize;

public Walrus(int w, double ts) {
weight = w;
tuskSize = ts;

And we create a Walrus using new Walrus(1000, 8.3); , then we end up with a Walrus
consisting of two boxes of 32 and 64 bits respectively:

Walrus instance

32 bits-[weight | 1000

64 bits-[tuskSize 8.3

anonymous_walrus.png

In real implementations of the Java programming language, there is actually some
additional overhead for any object, so a Walrus takes somewhat more than 96 bits.
However, for our purposes, we will ignore such overhead, since we will never interact with it
directly.

The Walrus we've created is anonymous, in the sense that it has been created, but it is not
stored in any variable. Let's now turn to variables that store objects.

Reference Variable Declaration

When we declare a variable of any reference type (Walrus, Dog, Planet, array, etc.), Java
allocates a box of 64 bits, no matter what type of object.

At first glance, this might seem to lead to a Walrus Paradox. Our Walrus from the previous
section required more than 64 bits to store. Furthermore, it may seem bizarre that no
matter the type of object, we only get 64 bits to store it.

However, this problem is easily resolved with the following piece of information: the 64 bit
box contains not the data about the walrus, but instead the address of the Walrus in
memory.

As an example, suppose we call:

Walrus someWalrus;
someWalrus = new Walrus(1000, 8.3);

The first line creates a box of 64 bits. The second line creates a new Walrus, and the
address is returned by the new operator. These bits are then copied into the someWalrus

box according to the GRoE.

If we imagine our Walrus weight is stored starting at bit 5051956592385990207 of memory,
and tuskSize starts at bit 5051956592385990239 , we might store 5051956592385990207 in
the Walrus variable. In binary, 5051956592385990207 is represented by the 64 bits
0100011000011100001600111110000010001110111601110000011116000111111 , giving us in box
notation:

Walrus instance

96 bits
, 64 bits weight 1000

L L]

someWalrus ©l66elleeeellleeeeleellllleceeeleeelllelllellleceselllleeellllll tuskSize 8.3

someWalrus_bit_notation.png

We can also assign the special value null to a reference variable, corresponding to all
zeros.

64 bits
someWalrus ©000

someWalrus_bit_notation_null.png

Box and Pointer Notation

Just as before, it's hard to interpret a bunch of bits inside a reference variable, so we'll
create a simplified box notation for reference variable as follows:

* If an address is all zeros, we will represent it with null.

* A non-zero address will be represented by an arrow pointing at an object instantiation.
This is also sometimes called "box and pointer" notation.

For the examples from the previous section, we'd have:

Walrus instance

someWalrus & weight
64 bits

1000

tuskSize 8.3

96 bits

someWalrus_simplified_bit_notation.png

someWalrus null
64 bits

someWalrus_simplified_bit_notation_null.png
Resolving the Mystery of the Walrus

We're now finally ready to resolve, fully and completely, the Mystery of the Walrus.

Walrus a = new Walrus (1600, 8.3);
Walrus b;
b = a;

After the first line is executed, we have:

main: Walrus instance

a & T weight 1000

tuskSize | 8.3

mystery_of_the_walrus_resolved_step1.png

After the second line is executed, we have:

main: Walrus instance
a & a weight| 1000
b .
tuskSize 8.3

mystery_of_the_walrus_resolved_step2.png
Note that above, b is undefined, not null.

According to the GRoE, the final line simply copies the bits in the a boxintothe b box.
Or in terms of our visual metaphor, this means that b will copy exactly the arrow in a and

now show an arrow pointing at the same object.

main: Walrus instance

a 73) weight | 1000
b

tuskSize | 8.3

mystery_of_the_walrus_resolved_step3.png

And that's it. There's no more complexity than this.

Parameter Passing

When you pass parameters to a function, you are also simply copying the bits. In other
words, the GRoE also applies to parameter passing. Copying the bits is usually called "pass
by value". In Java, we always pass by value.

For example, consider the function below:

public static double average(double a, double b) {
return (a + b) / 2;
§

Suppose we invoke this function as shown below:

public static void main(String[] args) %
double x 5.5
double y = 10.5;
double avg = average(x, y);

After executing the first two lines of this function, the main method will have two boxes
labeled x and vy containing the values shown below:

main
X 5.5
y 10.5

main_x_y.png

When the function is invoked, the average function has its own scope with two new boxes
labeled as a and b , and the bits are simply copied in. This copying of bits is what we
refer to when we say "pass by value".

average
a |5.5
b 10.5

average_a_b.png

If the average function were to change a ,then x in main would be unchanged, since
the GRoE tells us that we'd simply be filling in the box labeled a with new bits.

Test Your Understanding

Exercise 2.1.1: Suppose we have the code below:

public class PassByValueFigure {
public static void main(String[] args) %
Walrus walrus = new Walrus(3500, 10.5);
int x = 9;

doStuff(walrus, x);
System.out.println(walrus);
System.out.println(x);

public static void doStuff(Walrus W, int x) %
W.weight = W.weight - 100;
X =X - b5;

Does the call to doStuff have an effect on walrus and/or x? Hint: We only need to know
the GROE to solve this problem.

Instantiation of Arrays

As mentioned above, variables that store arrays are reference variables just like any other.
As an example, consider the declarations below:

int[] x;
Planet[] planets;

Both of these declarations create memory boxes of 64 bits. x can only hold the address
of an int array, and planets can only hold the address of a Planet array.

Instantiating an array is very similar to instantiating an object. For example, if we create an
integer array of size 5 as shown below:

x = new int[]30, 1, 2, 95, 4%;

Then the new keyword creates 5 boxes of 32 bits each and returns the address of the
overall object for assignment to x.

Objects can be lost if you lose the bits corresponding to the address. For example if the
only copy of the address of a particular Walrus is stored in x ,then x = null will cause
you to permanently lose this Walrus. This isn't necessarily a bad thing, since you'll often
decide you're done with an object, and thus it's safe to simply throw away the reference.
We'll see this when we build lists later in this chapter.

The Law of the Broken Futon

You might ask yourself why we spent so much time and space covering what seems like a
triviality. This is probably especially true if you have prior Java experience. The reason is
that it is very easy for a student to have a half-cocked understanding of this issue, allowing
them to write code, but without true comprehension of what's going on.

While this might be fine in the short term, in the long term, doing problems without full
understanding may doom you to failure later down the line. There's a blog post about this
so-called Law of the Broken Futon that you might find interesting.

IntLists

Now that we've truly understood the Mystery of the Walrus, we're ready to build our own
list class.

It turns out that a very basic list is trivial to implement, as shown below:

public class IntlList %
public int first;
public IntList rest;

public IntList(int £, IntList r) %
first = £;
rest = r;

You may remember something like this from 61a called a "Linked List".

Such a list is ugly to use. For example, if we want to make a list of the numbers 5, 10, and
15, we can either do:

IntList L = new IntList(5, null);
L.rest = new IntList(10, null);
L.rest.rest = new IntList (15, null);

Alternately, we could build our list backwards, yielding slightly nicer but harder to
understand code:

IntList L = new IntList (15, null);
L = new IntList(10, L);
L = new IntList(5, L);

While you could in principle use the IntList to store any list of integers, the resulting code
would be rather ugly and prone to errors. We'll adopt the usual object oriented
programming strategy of adding helper methods to our class to perform basic tasks.

size and iterativeSize

We'd like to add a method size tothe IntList class so thatif youcall L.size() , you
get back the number of itemsin L .

Consider writing a size and iterativeSize method before reading the rest of this
chapter. size should use recursion, and iterativeSize should not. You'll probably learn
more by trying on your own before seeing how | do it. The two videos provide a live
demonstration of how one might implement these methods.

My size method is as shown below:

/** Return the size of the list using... recursion! %/
public int size() %
if (rest == null) {
return 1;

h

return 1 + this.rest.size();

The key thing to remember about recursive code is that you need a base case. In this
situation, the most reasonable base case is that restis null , which results in a size 1 list.

Exercise: You might wonder why we don't do something like
if (this == null) return 0; . Why wouldn't this work?

Answer: Think about what happens when you call size. You are calling it on an object, for
example L.size(). If L were null, then you would get a NullPointer error!

My iterativeSize method is as shown below. | recommend that when you write iterative
data structure code that you use the name p to remind yourself that the variable is
holding a pointer. You need that pointer because you can't reassign "this" in Java. The
followups in this Stack Overflow Post offer a brief explanation as to why.

/** Return the size of the list using no recursion! %/
public int iterativeSize() $
IntlList p = this;
int totalSize = 0;
while (p != null) §
totalSize += 1;
p = p.rest;
%

return totalSize;

get

While the size method lets us get the size of a list, we have no easy way of getting the ith
element of the list.

Exercise: Write a method get(int i) that returns the ith item of the list. For example, if

L is5>10 > 15,then L.get(0) shouldreturn5, L.get(1) should return 10, and
L.get(2) should return 15. It doesn't matter how your code behaves for invalid i , either
too big or too small.

For a solution, see the lecture video above or the lectureCode repository.

Note that the method we've written takes linear time! That is, if you have a list that is
1,000,000 items long, then getting the last item is going to take much longer than it would if
we had a small list. We'll see an alternate way to implement a list that will avoid this
problem in a future lecture.

Previous
2. Defining and Using Classes

Next
4. SLLists

