%y CS61B
Labs / Lab 02: Debugging (Part 1)

Lab 02: Debugging (Part 1)

FAQ

Each assignment will have an FAQ linked at the top. You can also access it by adding “/faq” to the
end of the URL. The FAQ for Lab 02 is located here.

Introduction &

To debug a program, you must first know what's wrong. In this lab, you'll get some experience with
using the debugger to see the program state. When you run into a bug, the error is accompanied
with a “stack trace” that details the method calls that caused the error in the first place. We won't

cover going through the stack trace in this lab, but we'll talk more about it in a later lab.

Setup

Follow the assignment workflow to get the assignment and open it in IntelliJ.

Goals and Outcomes

In this lab, you will enhance your code debugging abilities by defusing a (programmatic) bomb.
We'll guide you through this process, but the intention is to make this a realistic debugging
experience.

By the end of this lab, you will...

« Be able to use the debugger and visualizer to inspect program state.
« Be able to interpret test failure messages.

« Be better able to approach debugging code.

INFO

For this lab and course in general, we highly encourage that you try things out on your own first,
including looking things up if you're unsure what something is. In this lab, this might be about
what a certain error means or the exception that is thrown - google it!




Bomb

The BombMain class calls the various phase methods of the Bomb class. For this lab, we'll be
running the lab through the tests in BombTest.java . If you were to run BombTest (in the testing
folder), you'll notice that there are some errors - this is because the current inputs to the phase
methods in BombMain aren’t the correct passwords! Your job is to figure out what the passwords to
each of these phases is by using the IntellU debugger.

DANGER

WARNING: The code is written so that you can't find the password just by reading it. For this
lab, you are forbidden from editing the Bomb and BombTest code, whether to add print
statements or otherwise modify it. The point of this exercise is to get comfortable using tools
that will help you a lot down the road. Please take it seriously! If you modify those files, you
will not pass the tests on the autograder!

As mentioned, you'll be running your code from BombTest.java in the testing folder and you can
use those tests to help you debug, as on other assignments, you will end up writing your own tests
to help you fix bugs! The only file you need to modify is BombMain.java

BombTest.java is where you will be running the program. Bomb.java and BombMain.java will
not have the green run button since it does not contain a static void main(String[] args) so

please make sure to run the program through BombTest.java !

Interactive Debugging

So far, you might have practiced debugging by using print statements to see the values of certain
variables as a program runs. When placed strategically, the output from printing might help make
the bugs obvious or narrow down their cause. This method is called print debugging. While print

debugging can be very useful, it has a few disadvantages:

« It requires you to modify your code, and clean it up after.
« It's tedious to decide and write out exactly what you want to print.

« Printing isn't always formatted nicely.

In this lab, we'll show you a new technique, interactive debugging — debugging by using an

interactive tool, or a debugger. We'll focus on Intelli)’s built-in debugger.

Debugger Overview

Breakpoints



Before starting the IntelliJ debugger, you should set a few breakpoints. Breakpoints mark places in

your code where you can suspend the program while debugging and examine its state. This:

« Doesn't require you to modify your code or clean it up after, since breakpoints are ignored in

normal execution.
+ Lets you see all the variables without needing to write print statements.

« Lets Intelli) display everything in a structured manner

Go ahead and open up Bomb.java and place a breakpoint. To set a breakpoint, click the area just to
the right of the line number.

public void phase®

String correct

if (!password.
System.out
System.ex1ii

y

System.err.pri

A red circle or diamond should appear where you clicked. If nothing appears, make sure that you
click next to a line with code. When the debugger reaches this point in the program, it will pause
before the execution of the line or method. Clicking the breakpoint again will remove it.

Running the Debugger
Now, let’s set a few breakpoints - you can do this either in Bomb.java or BombMain.java . With these

set, we can start a debugging session! Click on the green triangle next to the class or test you want
to debug (in test files there may be two green triangles). Instead of clicking the green triangle to

run, click the n debug option:



Run '‘BombTest’

Debug '‘BombTest' ~4D

(2 Run 'BombTest' with Coverage
Modify Run Configuration...

The selected program should run until it hits its first breakpoint. A debugger window should also
appear on the bottom of the interface, where the console was.

Debugger Java Visualizer G G £%
"main"@1 in group "main": RUNNING

“ phase0:36, Bomb (bomb) > S this =
answers:14, BombMain > password =
getBombMainOutputUntil:53, BombTest
testBombPhase0:22, BombTest

On the left, you will be able to see all current method calls and on the right, you will be able to see

the values of instantiated variables at this point in the program (they will also be shown in gray text

in the editor). For instances of classes, you can click the dropdown to expand them and look at their
fields.

In the debugger, you have a few options:

Learn something from the displayed values, identify what's wrong, and fix your bug! Click .
to stop the debug session.

* Click - to resume the program (until it hits another breakpoint or terminates).

* Click to advance the program by one line of code.

will step over it.

\]/ does something similar, but it will step into any method called in the current line, while
|

will advance the program until after it returns from the current method.



If you accidentally step too far and want to start the session over, click (at least right now,

there isn't a good way to directly step back).

Bomb Introduction (Phase 0)

INFO

For this lab, we will be providing method breakdowns if you want an overview of the
method/phase that you're debugging.

TASK

Set a breakpoint at phasee and use the debugger to find the password for phasee and replace
the phasee argument accordingly in bomb/BombMain.java . You can start the program from
testBombPhase@ in tests/bomb/BombTest.java .

Once you've found the correct password, running the code (not in debug mode) should output You

passed phase @ with the password \<password\>! instead of Phase @ went BOOM!

>

phaseo Method Breakdown

Visualizer (Phase 1)

For this portion of the lab, we'll be working with IntList . If you need a quick recap, refer to the
relevant lecture slides from this week.

Adding to our implementation of IntList are two methods that may not have been mentioned:
print and of . The of method makes it more convenient to create 1IntList s. Here's a brief
demonstration of how it works. Consider the following code:

IntList 1st = new IntList(1, new IntList(2, new IntList(3, null)));

That's a lot of typing for just a list of 1, 2, and 3 (quite confusing too)! The IntList.of method

addresses this problem. To create an IntList containing the elements 1, 2, and 3, you can simply type:

IntList 1st = IntList.of(1, 2, 3);



The other method print returns a String representation of an IntList.

IntList 1lst = IntList.of(1, 2, 3)
System.out.println(lst.print())
// Output: 1 -> 2 -> 3

Back to debugging - while being able to see variable values is great, sometimes we have data that's
not the easiest to inspect. For example, to look at long IntList s, we need to click a lot of
dropdowns. The Java Visualizer shows a box-and-pointer diagram of the variables in your program,
which is much better suited for IntList s. To use the visualizer, run the debugger until you stop at a

breakpoint, then click the “Java Visualizer” tab. The tab is outlined in red below.

Debugger & Java Visualizer G

"main"@1i...": RUNNING YV

2 phase0:36, Bomb (bomb) > £ this =

main:14, BombMain > (R) password = "Figure this out

The password for phase 1 is an IntList, nota String.You may find the IntList.of method
helpful.

TASK

Set a breakpoint at phasel and use the Java Visualizer to find the password for phase1l and
replace the phasel argument accordingly in bomb/BombMain.java . You can start the program
from testBombPhasel in tests/bomb/BombTest.java .




phasel Method Breakdown

Conditional Breakpoints (Phase 2)

Consider a program that loops 5000 times - trying to step through each time to find the error
wouldn't be too efficient. Instead, you would want your program to pause on a specific iteration,
such as the last one. In other words, you would want your program to pause on certain conditions.
To do so, create a breakpoint at the line of interest and open the “Edit breakpoint” menu by right-
clicking the breakpoint icon itself. There, you can enter a boolean condition such that the program
will only pause at this breakpoint if the condition is true. It will look something like this:

for (int test = 0; test < 7%
System.out.println("Hi");

BombMain.java:31
¥ Enabled
¥ Suspend: (e All Thread

Condition:

Another thing you can do is to set breakpoints for exceptions in Java. If your program is crashing,

you can have the debugger pause where the exception is thrown and display the state of your

program. To do so, click . in the debugger window and press the plus icon to create a “Java

Exception Breakpoint”. In the window that should appear, enter the name of the exception that your
program is throwing.

TASK
Set a breakpoint at phase2 and use the debugger to find the password for phase2 and replace
the phase2 argument accordingly in bomb/BombMain.java . Remember, don't edit Bomb.java !

You can start the program from testBombPhase2 in tests/bomb/BombTest.java .

INFO
NOTE: The password isn't given explicitly like in the previous phases. Rather, your task is to “try
to find it" using a conditional breakpoint.




>

phase2 Method Breakdown

At this point, you should be able to run the tests in tests/bomb/BombTest.java and have all of them

pass with a green checkmark.

Deliverables and Scoring

WARNING

Make sure you did not edit Bomb.java or BombTest.java . There are tests on the autograder

that check if you edited those files and you will not pass if there are changes in the file (this
includes adding comments). The local tests prevent you from editing Bomb.java , but not
BombTest.java (this is only on the autograder), so do not touch those files!

The lab is out of 5 points.

« Find all the passwords in BombMain.java and ensure that you pass all tests locally before
submitting to Gradescope.

Submission

Just as you did in Lab 1, add, commit, then push your Lab 2 code to GitHub. Then, submit to
Gradescope to test your code. If you need a refresher, check out the instructions in the Lab 1 spec
and the Assignment Workflow Guide.

Acknowledgements

This assignment is adapted from Adam Blank.**



