In addLast, suppose we instead decided to resize when size <= * 2 points
items.length (instead of ==). How would this change our AList’s behavior?

Select all that apply.

public void addLast{int x} {
if (size == items.length) {
re 2(size * 2);

public void addlLast(int x) {
if (size <= items.length) {
ze(size * 2);

}

items[size] = x;
size += 1;

}

items[size] = x;
size += 1;

}

D The AList will no longer consistently return the correct values for get().
[] The AList will run faster because we ensure there's always space to add new items.
|:| The AList will take up significantly more space in memory.

|:| The AList will run slower because it has to call System.arrayCopy more frequently.

Why does multiplicative resizing work better than additive resizing? * 1 point

O For sufficiently large values, multiplication is a faster operation than addition.
O It ensures we don't use as much space in memory to store our array.

O We avoid needing to copy the whole array as frequently.

In our Generic AList, what would happen if we forgot to null out the * 2 points
removed item during removelLast?

Select all that apply.

public Glorp removel
Glorp returnItem = ¢
items[size - 1] = null;

public Glorp remove
Glorp returnItem
s5ize -= 1;

size -= 1;

- return returnItem;
return returnItem;

D The old Glorp object would overwrite the next Glorp object we try to add to our list
D size() will no longer return the correct value
D The old Glorp would take up space in memory even though we no longer need it

D Running removelast would result in a NullPointerException

A copy of your responses will be emailed to yiyunchen@berkeley.edu.

This form was created inside of UC Berkeley. Report Abuse

Google Forms

