.

29 CS61B

Labs / Lab 03: Debugging (Part 2)

Lab 03: Debugging (Part 2)

FAQ
The FAQ for Lab 03 is here.

Introduction

This is a continuation of debugging from last week. In this week's lab, we will be utilizing the
debugging tools we used last week and gaining more practice with debugging. The goal for today’s

lab is to learn more about the following:

« Reading the stack trace and knowing how to isolate the bug from it.
« Understanding the different types of exceptions we might run into.
« Getting more comfortable using the Intelli) debugger.

« Exception breakpoints, expressions and watches (optional).

As usual, don't hesitate to look things up if you're unsure what something means, particularly, what
a specific exception or error means if it comes up in the stack trace (which we'll be covering in
today's lab). The hints are meant to guide your thinking, but we encourage you to try going through
the lab on your own first before opening the hints.

Adventure

Running the Game and Tests

The very first thing you should do is run the main method in AdventureGame to run through the
game. Follow the instructions that are given once you run through the game. This will give you a
sense of what the program you are debugging is supposed to do (if you run into an error, that's

normal).

Then, after you've run the game, run the tests in tests/adventure/AdventureGameTests . They should
fail on BeeCountingStage which will lead you into debugging the first error below (note that all the

tests will be failing at this point). To pass the entirety of AdventureGameTests , you'll need to fix all

the individual stage tests (fixing one stage will show that you passed that individual stage). The

stages are meant to be completed in order of the spec.

We encourage you to run through the game for each stage you complete to see how they're all

related to the game. Don't forget to commit frequently to save your progress!

Reading Stack Traces
When a runtime error occurs in Java, a stack trace is printed to the console to provide information

on where the error occurred and what steps the program took to get there. When running

Adventure for the first time, your stack trace will look something like this:

The first thing to note is what kind of error occurred; this is shown at the first line of the stack trace.

In this case, our code threw a NullPointerException .

For some exceptions, including NullPointerException s, Java will give you an explanation. Here,

this.input is null, so we can't invoke (call) a method on it.

The lines beneath it represent the sequence of methods the program took to arrive at the error: the
first line in the list is where the error occurred and the line beneath it represents the line of code that

called the method which threw the error, and so on.

You can click on blue text to navigate to that file and line.

INFO

To get a sense of how you would interpret stack traces in, you would usually start from the top.
As mentioned, the first line in the stack trace is where the error occurred - in other words, it is
the last method call that took place before the error, so you can use that to isolate where the
bug is. Depending on how the program is written, how it's designed and what code you've
written/contributed, you would navigate to the appropriate line in the stack trace and click on

the blue text to go that line and start debugging.

For each of the following stages, only change what is necessary! You should not be rewriting
entire blocks of code unless otherwise specified. We've included how many lines we changed as
a guideline.

INFO

You can run through the adventure game each time if you'd like to validate correctness, but you
don't need to - feel free to debug through the tests directly. For each file you'll be working in, it
contains a playStage method, and you can set a breakpoint in that method. From there, you
can start debugging in AdventureGameTests .

Debug BeeCountingStage

TASK

Fix the NullPointerException that occursin BeeCountingStage by analyzing the stack trace. You
can ignore the lines with <xx internal lines> ; these are from test framework or library code

and usually won't help you find errors.

Expected lines modified: 1

v
Hint 1

Just because the error occurs on a certain line doesn’t necessarily mean that piece of code
is incorrect - something not shown in the stack trace may be the elusive culprit!

v
Hint 2

Take a close look at the constructor. Look at the variables that are declared and what is
instantiated.

It turns out that this isn't the only error in BeeCountingStage !

TASK

Fix the IndexOutOfBoundsError that occursin BeeCountingStage .

INFO
Ignore the grey links to Objects.java and ArrayList.java at the top of the stack trace. The

error may have occurred in code that was not yours, but the root cause was probably something
your code tried to do.

Expected lines modified: 1

Hint 1

Debug speciesListStage

TASK

Fix the error(s) in SpeciesListStage . If you don't see what the issue is inside the method where
the exception occurred (the top line of the stack trace), it's often a good idea to look at the
second line to see where the method is being called from, and with what arguments.

Expected lines modified: 3-4

Hint 1

Debug PalindromeStage

TASK

Sometimes, IntelliJ will tell you something that it thinks is wrong. Hover over the yellow / orange
highlights in the method with the bug (in the digitsToIntList method in PalindromeStage -
you can navigate to it through the stack trace). Does that give you any useful information?

Use this feature to address the error in palindromeStage .

INFO
If the debugger feels unresponsive, it is usually due to an infinite loop somewhere in your code.
If you set a breakpoint and it is never reached, then you know an infinite loop occurs before the

breakpoint! Use this in combination with stepping to isolate the problem.

There are two bugs in this part that you'll need to fix. Fix the most obvious one first and
then try to isolate and solve the second one. The hint for this part of the lab applies to the

second bug that needs to be resolved.

Expected lines modified: 3

>

Hint 1 (Only applies to second bug)

Debug MachineStage

The sumofElementwiseMax method in MachineStage is supposed to take two arrays, compute the
element-wise max of those two arrays, and then sum the resulting maxes. For example, for two
arrays {2, o, 10, 14} and {-5, 5, 20, 30}, the element-wise maxis {2, 5, 20, 30} .In the
second position, the larger of @ and 5 is 5. The sum of this element-wise maxis 2 + 5 + 20 +

30 = 57.

There are two different bugs that make the method return an incorrect result. You can assume the

input parsing code in playStage works correctly.

To find the bugs, you should not step into the mysteryMax or mysteryAdd functions, or even try to

understand what they are doing. That is, you should use to only see the result. These are

mysterious functions that are deliberately obfuscated. If you find yourself having accidentally

stepped into one of these two functions, use the button to escape.
Even without stepping INTO these functions, you should be able to tell whether they have a bug or
not. That's the glory of abstraction! Even if | don't know how a fish works at a molecular level, there

are some cases where | can clearly tell that a fish is dead.

TASK

Fix the two bugs so that sumofElementwiseMax returns a correct result. If you find a bug in
mysteryMax Or mysteryAdd , rewrite the method entirely instead of trying to fix it. Don't rewrite
code unnecessarily, though — be sure that it's broken first!

Expected lines modified: 2-5

Hints

Another Debugging Puzzle?! [OPTIONAL]

The rest of the lab is optional. We'll cover some additional tools that you can use in the Intelli)
debugger that you may find useful - exception breakpoints and expressions and watches.

DANGER

Do not modify Puzzle.java !

These exercises will involve working with code that may seem quite cryptic and unfamiliar.
Enforce the abstraction barriers and try to find the answers without having to understand
exactly what is going on!

Exception Breakpoints

When debugging, you may sometimes run into an unexpected error, making it difficult to figure out
what is wrong with your code. To help with this, Intelli) allows you to set breakpoints on exceptions.

These ensure that when your code throws an exception, the debugger will pause execution and

allow you to inspect the state of your program.

Go ahead and run the Puzzle class. You should see the following output:

For many common exceptions, IntelliJ will indicate a “Create breakpoint” button in the console
output (just to the right of java.lang.RuntimeException in the above screenshot), which will allow
you to access the advanced breakpoint window. To access it without this button, create a breakpoint
on any line (in the following screenshot, we've created a breakpoint on line 23), right-click it, and

select "More”.

isCorrect(answer

v Enabled

F

¥ Suspend; (=) All Thread

Mare (Ctrl+Shift+F8)

The advanced breakpoint window should look something like this:

¥ | Enabled
Any exception
¥ | Suspend: (e All

Condition:

"Breakpoint hit" message Stack trace Catch class filters:

Evaluate and log:

Instance filters:

Class filters:

Pass count:

Caller filters:

Caught exception

¥'| Uncaught exception

There's a lot going on here, but you don't need to understand most of it. Click the plus symbol in

the top-left corner, and you should see a popup like this:

+ — [m [d]

lava Method Breakpoints

Java Field Watchpoints

2 Java Exception Breakpoints
Kotlin Field Watchpoints

Select "Java Exception Breakpoints”, and another window will appear where you can specify the type
of exception for which we want to pause execution. The console told us that we were getting a

java.lang.RuntimeException , SO go ahead and select that.

N i
WMo matches found 1npi

RuntimeException

RuntimeExceptionlGEVERERID)

RuntimeCopyException in CodeAttribute
RuntimeCopyException in StackMapTable
RuntimeErrorException
RuntimeIOException
RuntimeOperationsException
RuntimeMBeanException
ConcurrentRuntimeException
ContextedRuntimeException
JAXBRuntimeException

JaxenRuntimeException

You should now see the original advanced breakpoint window, with a newly created exception
breakpoint aptly named ‘java.lang.RuntimeException’ (if you used the console’s “Create breakpoint”

button to access the window, you may see two copies of this, and that's okay).

You will have the option to break on caught or uncaught exceptions, or both. This can be useful
because a lot of library code intentionally throws and catches a lot of exceptions, so this allows us to

focus on the unhandled ones if necessary. For now, go ahead and leave both options checked.

If you debug the program at this point, your code should pause on line 53, with a little lightning bolt
symbol in place of the usual red circle. This indicates that the breakpoint was triggered by an
exception, rather than a normal breakpoint.

RuntimeException

From this, we can see that Intelli) is hinting that the problem may be in src/puzzle/answer.txt . By
inspecting that file, poking around Puzzle.java , and using other debugging techniques you
learned in Lab 02 and this lab, can you figure out what's going on?

TASK
Fix answer.txt so that Puzzle no longer throws a RuntimeException . Feel free to look at the

hint if you're stuck!

Hint

After fixing the bug, run puzzle again. You should now see the following output:

Hmm, what is the value of "guessThis®™ when the following error is thrown?

Replace the first line of the “puzzle’ method accordingly.

Hint: Use an exception breakpoint.

Read the error message and see if you can find the answer! If you've got it correct, Puzzle.java will

no longer error and you should pass testPuzzle inside of tests/puzzle/PuzzleTest .

TASK

Replace the value in answer.txt so that puzzie no longer errors.

Expressions and Watches

When debugging, you may not always have the value that you want to inspect stored in a variable.
Luckily, IntelliJ has a solution for us! Once paused on a certain line, you can use the “Evaluate
Expression” tool (shaped like a calculator). You can click on the calculator icon to open up a whole

new window, but you can also just type the expression into the debugger directly:

You can use variables and method calls with this tool too! Even though we've only used Math library
methods in the following example, you can call anything you want. Here, we are using the tool in

Puzzle.java with an initial answer guess of 973:

isCorrect(answer

stem. .println

Turn answer;

|

dfswWer

After you resume the program, result will be lost. If you don’t want to lose it, you can use
Ctrl+Shift+Enter (Windows) or Cmd+Shift+Enter (Mac) to add it as a watch. This will keep it around
even after you continue execution. Moreover, watches will change value accordingly with the

program, just like normal variables would!

Watches will persist even after you stop and rerun your program, so they can be very useful for
debugging over multiple executions. As an example, I've changed my guess from before to be 1717
and reran the program entirely, but didn’t have to re-evaluate the expression for the debugger to

tell me what it was!

if (isCorrect(answer
System. .println

‘eturn answenr:

o0 Math.pow(Math.abs(answer + 3}, 2)

dNsWer

There won't be an associated exercise with this part, but we think it would be a useful thing to know

about!

Congratulations, you've made it to the end of Lab03!

Deliverables and Scoring

The lab is out of 5 points. There are no hidden tests on Gradescope. If you pass all the local tests for
Adventure , you will receive full credit on the lab (unless you modified things you weren't supposed
to modify). To reiterate, “Another Debugging Puzzle?!” is optional for this lab. The final deliverables

are:

* BeeCountingStage (1.25 pts)
e SpeciesListStage (1.25 pts)
¢ PalindromeStage (1.25 pts)

* MachineStage (1.25 pts)

Submission

Just as you did for the previous assignments, add, commit, then push your Lab 03 code to GitHub.
Then, submit to Gradescope to test your code. If you need a refresher, check out the instructions in
the Lab 1 spec and the Assignment Workflow Guide.

