= (Cs61B Textbook

111 A Review of Dynamic
Method Selection

In previous lectures we have gone over classes extending other classes, and to make sense
of this we considered whether the sub class has an "is-a relationship" with the superclass.

For example, if we had the two classes:

Dog: Implements bark() method

ShowDog: Extends Dog, overrides bark method

This would be a valid extension as a ShowDog is-a Dog and a Dog is-an Object. These
relationships satisfy the condition of a subclass being-an instance of the super class.

Object
A

bark() Dog

!

bark() | ShowDog

With this in Mind, what are the Rules to Decide if
the Code Would Run or Run into Errors?

This is a particularly tricky problem to solve but the rules to look out for include:

Compliers will allow Memory Boxes to hold any subtype of itself

For example, compliers will allow the Dog memory box to hold a ShowDog object as a
ShowDog is a subtype of the Dog Class

Compliers will allow calls based on Static type.

For example, if a variable were declared as a Dog it's static type would be a Dog and
the complier would allowed it to call bark()

Overridden non-static methods are selected at run time based on dynamic type.

Everything else is based on static types, inculding overloaded methods.

Static Type vs. Dynamic Type

Every variable in Java has a “compile-time type”, a.k.a. “static type”.

This is the type specified at declaration. Never changes!

Variables also have a “run-time type”, a.k.a. “dynamic type”.

This is the type specified at instantiation (e.g. when using new).

Equal to the type of the object being pointed at.

Accompanying Lecture

[Inheritance3, Video 0] Dynamic Method Selection Puzzle optional

Previous
11. Inheritance lll: Subtype Polymorphism, Comparators, Comparable

Next
11.2 Subtype Polymorphism vs Explicit Higher Order Functions

