= (C CS61B Textbook Q

11.5 Chapter Summary

Review: Typing Rules

Compiler allows the memory box to hold any subtype.
Compiler allows calls based on static type.
Overriden non-static methods are selected at runtime based on dynamic type.

For overloaded methods, the method is selected at compile time.

Subtype Polymorphism Consider a variable of static type Deque . The behavior of calling
deque.method () depends on the dynamic type. Thus, we could have many subclasses the
implement the Deque interface, all of which will be able to call deque.method() .

Subtype Polymorphism Example Suppose we want to write a function max() that returns

the max of any array regardless of type. If we write a method max(0Object[] items) , where
we use the '>' operator to compare each element in the array, this will not work! Why is this

the case?

Well, this makes the assumption that all objects can be compared. But some objects
cannot! Alternatively, we could write a max() function inside the Dog class, but now we
have to write a max() function for each class that we want to compare! Remember, our
goal is to write a “one true max method” that works for all comparable objects.

Solution: OurComparable Interface The solution is to create an interface that contains a
compareTo(Object) method; let’s call this interface OurComparable . Now, our max()
method can take a OurComparable[] parameter, and since we guarantee that any object
which extends the interface has all the methods inside the interface, we guarantee that we
will always be able to call a compareTo method, and that this method will correctly return
some ordering of the objects.

Now, we can specify a “one true max method”. Of course, any object that needs to be
compared must implement the compareTo method. However, instead of re-implementing
the max logic in every class, we only need to implement the logic for picking the ordering
of the objects, given two objects.



Even Better: Java’s In-Built Comparable Java has an in-built Comparable interface that
uses generics to avoid any weird casting issues. Plus, Comparable already works for things
like Integer , Character ,and String ; moreover, these objects have already
implemented a max , min , etc. method for you. Thus you do not need to re-do work that'’s
already been done!

Comparators The term “Natural Order” is used to refer to the ordering implied by a
Comparable 's compareTo method. However, what if we want to order our Dog objects by
something other than size ? We will instead pass ina Comparator<T> interface, which
demands a compare() method. We can then implement the compare() method anyway
we want to achieve our ordering.

Previous
11.4 Comparators

Next
11.6 Exercises



