= (C CS61B Textbook Q

12.5 Chapter Summary

Summary of the main points in this chapter.

You can find the code from this lecture here.

Exceptions

Most likely you have encountered an exception in your code such as a
NullPointerException or an IndexOutOfBoundsException . Now we will learn about how
we can “throw” exceptions ourselves. Here is an example of an exception that we throw:

throw new RuntimeException("For no reason.");

This is useful to ensure reasonable functioning of our code, even when facing unexpected
behavior.

Iteration

Difference between lterators and Iterables

These two words are very closely related, but have two different meanings that are often
easy to confuse. The first thing to know is that these are both Java interfaces, with
different methods that need to be implemented. Here is a simplified interface for Iterator:

public interface Iterator<T> %
boolean hasNext();
T next();

§

Here is a simplified interface for Iterable:



public interface Iterable<T> {
Iterator<T> iterator();

ky

Notice that in order for an object (for example an ArrayList or LinkedList) to be iterable, it
must include a method that returns an iterator. The iterator is the object that actively steps
through an iterable object. Keep this relationship and distinction in mind as you work with
these two interfaces.

Object Methods

toString

The toString() method returns a string representation of objects. For example,
System.out.println(someObject) callsthe toString() method of someObject , and
prints to console whatever string it returns.

This is most helpful when we are debugging, as it allows us to much more easily
understand the current state of our Objects.

==vs .equals

We have two concepts of equality in Java- “==" and the “.equals()” method. The key
difference is that when using ==, we are checking if two objects have the same address in
memory (that they point to the same instance or object). On the other hand, .equals() is a
method that can be overridden by a class and can be used to define some custom way of
determining equality. This permits the class to utilize the additional knowledge it has about
itself to more accurately answer questions of equality.

For example, say we wanted to check if two stones are equal:



public class Stonef
int weight;
public Stone(int weight)3$
this.weight = weight;

$
§
Stone s = new Stone(100);
Stone r = new Stone(100);

If we want to consider s and r equal because they have the same weight. If we do check
equality using ==, these Stones would not be considered equal because they do not have
the same memory address.

On the other hand, if you override the equals method of Stone as follows

public boolean equals(Object o0)4%
return this.weight == ((Stone) o).weight

§

We would have that the stones would be considered equal because they have the same

weight.

Previous
12.4 Object Methods

Next
12.6 Exercises



