## 13.10 Exercises

## **Factual**

1. Analyze the runtime of the following code in terms of N:

```
for (int i = 0; i < N; i++) {
   int j = 0;
   while (j < N) {
        j = N;
   }
}</pre>
```

- 2. Let f(N) = 2N. Which of the following statements is true?
  - $lefter{} f(N) \in \Theta(1)$
  - $lefter f(N)\in\Theta(N)$
  - $lacksquare f(N)\in\Theta(N^2)$
  - $f(N) \in O(1)$
  - $lefter f(N) \in O(N)$
  - $lacksquare f(N) \in O(N^2)$
  - Problem 1

Note that the inner loop only runs once, since it immediately sets j = N in the first iteration. As such, the runtime is just the runtime of the outer loop, which

#### 

Q

Problem 2

Remember that  $\Theta$  means the same order of growth (linear), while O can be roughly thought of as "less than or equal to" some order of growth.

```
f(N) \in \Theta(1)

f(N) \in \Theta(N)

f(N) \in \Theta(N^2)

f(N) \in O(1)

f(N) \in O(N)

f(N) \in O(N)
```

### **Procedural**

- 1. **True or false.** Suppose we have a function f, and we are told  $f(N) \in \Theta(N^2)$ . If we run f on an input of size N, then an input of size 2N, it will take roughly 4 times as long.
- 2. **True or false.** Suppose we have a function f, and we are told  $f(N) \in \Theta(N^2)$ . If we run f on an input of size 100, then an input of size 200, it will take roughly 4 times as long.

Problem 1

**True**. This is the definition of asymptotics.

Problem 2

**False**. 100 may be too small of an input for asymptotic behavior to start displaying. Remember that asymptotics only apply to very large inputs!

# Metacognitive

1. Why do use asymptotics instead of empirical timing (for example, like the Stopwatch class from Lab 3)?

∨ Problem 1

There are several advantages to using asymptotics over empirical timing. See if you can come up with more beyond the list below!

- Different computers run at different speeds. Depending on architecture, hardware components, even room temperature, the same code can execute with vastly different empirical times.
- It may not be feasible to test code on extremely large inputs.
- Asymptotics are language-agnostic. The same algorithm may have different empirical runtime depending on which language it's written in (for example, C is usually around 10-400x faster than Python), but will have the same asymptotic runtime.
- The worst-case runtime may only occur in certain cases that are hard to measure empirically.

Previous 13.9 Summary

Next

14. Disjoint Sets

Last updated 1 year ago

