= (C CS61B Textbook Q

13.4 Asymptotic Behavior

Be on your best behavior!

In most applications, we are most concerned about what happens for very large values of
N. This is known as the asymptotic behavior. We want to learn what types of algorithms
are able to handle large amounts of data. Some examples of applications that require highly
efficient algorithms are:

Simulating the interactions of billions of particles
Maintaining a social network with billions of users

Encoding billions of bytes of video data

Algorithms that scale well have better asymptotic runtime behavior than algorithms that
scale poorly.

[Asymptotics1, Video 6] Worst Case Orders of Growth

Let us return to the original problem of characterizing the runtimes of our dup functions.
Recall that we desire characterizations that have the following features:




Simple and mathematically rigorous.

Clearly demonstrate the superiority of dup2 over dup.

We've accomplished the second task! We are able to clearly see that dup2 performed
better than dup1 . However, we didn't do it in a very simple or mathematically rigorous way.
Luckily, we can apply a series of simplifications to solve these issues.

Simplification 1: Consider Only the Worst Case

When comparing algorithms, we often only care about the worst case. The worst case is
often where we see the most interesting effects, so we can usually ignore all other cases
but the worst case.

Example:

Consider the operation counts of some algorithm below. What do you expect will be the
order of growth of the runtime for the algorithm?

N (linear)
N? (quadratic)
N3 (cubic)
N (sextic)
Operation Count
less than (<) 100N2 4 3N
greater than (>) N3 +1
and (&&) 5000

Answer: N3 (cubic)

Intuitively, N3 grows faster than Nz, so it would "dominate." To help further convince you
that this is the case, consider the following argument:



Suppose the < operator takes a nanoseconds, the > operator takes 5 nanoseconds,
and the && takes -y nanoseconds.

The total time is «(100N? + 3) + B(2N3 + 1) + 5000~ nanoseconds.
For very large IV, the 2ﬂN3 term is much larger than others.

It can help to think of it in terms of calculus. What happens as N approaches infinity?
Which term ends up dominating?

Simplification 2: Restrict Attention to One Operation

Pick some representative operation to act as a proxy for overall runtime. From our dup
example:

Good choice: increment , or less than or equals or array accesses.

Bad choice: assignmentof j = i + 1 ,0r i = 0.

The operation we choose is called the “cost model.”

Simplification 3: Eliminate Low Order Terms

Ignore lower order terms.

Sanity check: Why does this make sense? (Related to the checkpoint above!)

Simplification 4: Eliminate Multiplicative Constants

Ignore multiplicative constants.

Why? No real meaning!

By choosing a single representative operation, we already “threw away” some
information.

Some operations had counts of 3N2, N2/2, etc. In general, they are all in the
family/shape of N2.

Checkpoint Exercise:



Apply our four simplification rules to the dup2 table.

Operation Symbolic Count
i=0 1

j=i+1 Oto N

< OtoN —1
== Tto N —1
array accesses 2t0 2N — 2

Example answer: array accesses with order of growth V.

<, ==, and j=i+1 would be fine answers as well.

Simplification Summary

Only consider the worst case.
Pick a representative operation (aka: cost model)
Ignore lower order terms

Ignore multiplicative constants.

Next
13.6 Simplified Analysis Process

Previous
13.3 Checkpoint: An Exercise



