13.7 Big-Theta Not to be confused with Big-O. ## **Formalizing Order of Growth** Given some function Q(N), we can apply our last two simplifications to get the order of growth of Q(N). For example, if $Q(N)=3N^3+N^2$, the order of growth is N^3 . From now onward, we will refer to order of growth as Θ (pronounced "big theta"). ## **Order of Growth Examples** The following functions have these corresponding order of growths: | Function | Order of Growth | |-----------------|-----------------| | N^3+3N^4 | N^4 | | $1/N+N^3$ | N^3 | | 1/N+5 | 1 | | Ne^N+N | Ne^N | | $40sin(N)+4N^2$ | N^2 | Instead of saying a function has *order of growth* $__$, we say that the function *belongs to* $\Theta(__)$. In other words, it belongs to the family of functions that have that same order of growth. ## **Formal Definition** For some function R(N) with order of growth f(N), we write that: $R(N) \in \Theta(f(N))$ and there exists some positive constants k_1 , k_2 such that... $k_1 \cdot f(N) \leq R(N) \leq k_2 \cdot f(N)$ for all values N greater than some N_0 (a very large N). Previous 13.6 Simplified Analysis Process Next 13.8 Big-O Last updated 1 year ago