13.7 Big-Theta

Not to be confused with Big-O.

Formalizing Order of Growth

Given some function Q(N), we can apply our last two simplifications to get the order of growth of Q(N).

For example, if $Q(N)=3N^3+N^2$, the order of growth is N^3 .

From now onward, we will refer to order of growth as Θ (pronounced "big theta").

Order of Growth Examples

The following functions have these corresponding order of growths:

Function	Order of Growth
N^3+3N^4	N^4
$1/N+N^3$	N^3
1/N+5	1
Ne^N+N	Ne^N
$40sin(N)+4N^2$	N^2

Instead of saying a function has *order of growth* $__$, we say that the function *belongs to* $\Theta(__)$. In other words, it belongs to the family of functions that have that same order of growth.

Formal Definition

For some function R(N) with order of growth f(N), we write that:

 $R(N) \in \Theta(f(N))$ and there exists some positive constants k_1 , k_2 such that...

 $k_1 \cdot f(N) \leq R(N) \leq k_2 \cdot f(N)$ for all values N greater than some N_0 (a very large N).

Previous 13.6 Simplified Analysis Process

Next 13.8 Big-O

Last updated 1 year ago

