= (C CS61B Textbook Q

141 Introduction

& New Data Structure Alert & : Disjoint Sets

People like you and | reside in our countries and live here. We can think of each country as
a set and all of the people within it as elements within that set. The same person cannot
live in two different countries simultaneously. What we have just modeled is a disjoint set.

Two sets are named disjoint sets if they have no elements in common. A Disjoint-Sets
(or Union-Find) data structure keeps track of a fixed number of elements partitioned
into a number of disjoint sets. The data structure has two operations:

1. connect(x, y) :connect x and vy .Also known as union

2. isConnected(x, y) :returnstrueif x and y are connected (i.e. part of the same
set).

[Disjoint Sets, Video 1] - Intro to Disjoint Sets

Professor Hug's Explanation of an Introduction to Disjoin Sets

A Disjoint Sets data structure has a fixed number of elements that each start out in their
own subset. By calling connect(x, y) for some elements x and y , we merge subsets
together.

For example, say we have four elements which we'll call A, B, C, D. To start off, each

element is in its own set:

{A} {B} {C} {D}

After calling connect(A, B) :

060

{A, B} {C}{D}

Note that the subsets A and B were merged. Let's check the output some isConnected
calls:

isConnected(A, B) -> true

isConnected(A, C) -> false

After calling connect(A, D) :

A, B, D

{A, B, D}{C}

We find the set A is part of and merge it with the set D is part of, creating one big A, B, D
set. C is left alone.

isConnected(A, D) -> true

isConnected(A, C) -> false

With this intuition in mind, let's formally define what our DisjointSets interface looks like. As
a reminder, an interface determines what behaviors a data structure should have (but not
how to accomplish it). In this way, any class that implements the DisjointSets interface
knows to always include functions: connect(int p, int q) and

isConnected(int p, int) as seen below. For now, we'll only deal with sets of non-
negative integers. This is not a limitation because in production we can assign integer
values to anything we would like to represent.

public interface DisjointSets i
/** connects two items P and Q */
void connect(int p, int q);

/** checks to see if two items are connected x*/
boolean isConnected(int p, int q);

But how are we going to save data for these Disjoint sets to see which member belongs to
it's corresponding set? What data structures are we going to use to represent this
awesome data structure? In addition to learning about how to implement a fascinating data
structure, this chapter will be a chance to see how an implementation of a data structure
evolves. We will discuss four iterations of a Disjoint Sets design before being satisfied:
Quick Find — Quick Union — Weighted Quick Union (WQU) — WQU with Path
Compression. We will see how design decisions greatly affect asymptotic runtime and

code complexity.

Previous
14. Disjoint Sets

Next
14.2 Quick Find

