= (C CS61B Textbook Q

14.4 Weighted Quick Union (WQU)

Improving on Quick Union relies on a key insight: whenever we call find , we have to climb
to the root of a tree. Thus, the shorter the tree the faster it takes!

New rule: whenever we call connect , we always link the root of the smaller tree to the
larger tree.

Following this rule will give your trees a maximum height of logIN, where N is the number of
elements in our Disjoint Sets. How does this affect the runtime of connect and

isConnected ?

[Disjoint Sets, Video 4] - Weighted Quick Union

Professor Hug's explanation on Weighted Quick Union

Let's illustrate the benefit of this with an example. Consider connecting the two sets T1 and
T2 below:



Size: 6 Size: 3

We have two options for connecting them:

The first option we link T1to T2. In the second, we link T2 to T1.

i - -
0 Lz L8] _ )
-3
1] 2] (3]
S | _
Option 1 Option 2

The second option is preferable as it only has a height of 2, rather than 3. By our new rule,
we would choose the second option as well because T2 is smaller than T1 (size of 3
compared to 6).

We determine smaller / larger by the number of items in a tree. Thus, when connecting two
trees we need to know their size (or weight). We can store this information in the root of the
tree by replacing the -1 's with -(size of tree) .

Maximum height: Log N

Following the above rule ensures that the maximum height of any tree is ©(log N). N is the
number of elements in our Disjoint Sets. By extension, the runtimes of connect and
isConnected are bounded by O(log N).

Why logIN? The video above presents a more visual explanation. Here's an optional
mathematical explanation why the maximum height is logo N . Imagine any element x in tree
T'1. The depth of x increases by 1 only when T'1 is placed below another tree T'2. When



that happens, the size of the resulting tree will be at least double the size of T'1 because
size(T2) > size(T'1). The tree with = can double at most logs N times until we've

reached a total of N items (2/°%2"Y = N). So we can double up to log, N times and each

time, our tree adds a level — maximum logs N levels.

You may be wondering why we don't link trees based off of height instead of weight. It
turns out this is more complicated to implement and gives us the same O(log N) height

limit.

Summary

Implementation Constructor connect
QuickUnion O(N) O(N)
QuickFind O(N) O(N)
QuickUnion O(N) O(N)
Weighted Quick Union O(N) O(log N)

N = number of elements in our DisjointSets data structure

Next
14.5 Weighted Quick Union with Path Compression

isConnected

O(N)

o)

O(N)

O(log N)

Previous
14.3 Quick Union



